803 research outputs found

    Design, performance evaluation, and investigation of the theoretical capabilities of the NASA Millimeter-wave Imaging Radiometer (MIR)

    Get PDF
    The development of techniques for passive microwave retrieval of water vapor and precipitation parameters using millimeter- and sub-millimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 150, 220, and 340 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, and retrieval of water vapor profiles. Both theoretical and experimental results to date are discussed

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Activities within the period from July 1, 1992 through December 31, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the calibration of the Millimeter-wave Imaging Radiometer (MIR), preliminary flight data analysis, and preparation for TOGA/COARE. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. In the current configuration, the MIR has channels at 90, 150, 183(+/-1,3,7), and 220 GHz. Provisions for three additional channels at 325(+/-1,3) and 8 GHz have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. Past Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design, in-flight software, and post-flight data display software. The combination of the above millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide unique radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been published, and is included as an appendix

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Progress by the Georgia Institute of Technology's Laboratory for Radio-science and Remote Sensing in developing techniques for passive microwave retrieval of water vapor profiles and cloud and precipitation parameters using millimeter and submillimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 166, 220, 340, and 410 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution precipitation mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, including cirrus ice mass, and improved retrieval of water vapor profiles. During the period from January 1, 1994 through June 30, 1994 research activities focussed on calibrating and interpreting data from the Millimeter-Wave Imaging Radiometer (MIR). The MIR was deployed on the NASA ER-2 during the Convective Atmospheric Moisture Experiment (CAMEX, September-October 1993) to obtain the first submillimeter-wave tropospheric imagery of convective precipitations. A 325-GHz radiometer consisted of a submillimeter-wave DSB receiver with three IF channels at +/- 1, 3, and 8.5 GHz, and approximately 14 dB DSB noise figure was successfully operated during these experiments. Activities supported under this grant include a study of the impact of local oscillator reflections from the MIR calibration loads, the development of optimal gain and offset filters for radiometric calibration, and the modeling and interpretation of the MIR 325-GHz data over both clear and cloudy atmospheres. In addition, polarimetric radiometer measurements and modeling for ocean surface and atmospheric cloud-ice studies_were supported

    On the infimum attained by a reflected L\'evy process

    Get PDF
    This paper considers a L\'evy-driven queue (i.e., a L\'evy process reflected at 0), and focuses on the distribution of M(t)M(t), that is, the minimal value attained in an interval of length tt (where it is assumed that the queue is in stationarity at the beginning of the interval). The first contribution is an explicit characterization of this distribution, in terms of Laplace transforms, for spectrally one-sided L\'evy processes (i.e., either only positive jumps or only negative jumps). The second contribution concerns the asymptotics of \prob{M(T_u)> u} (for different classes of functions TuT_u and uu large); here we have to distinguish between heavy-tailed and light-tailed scenarios

    Determinant and Weyl anomaly of Dirac operator: a holographic derivation

    Get PDF
    We present a holographic formula relating functional determinants: the fermion determinant in the one-loop effective action of bulk spinors in an asymptotically locally AdS background, and the determinant of the two-point function of the dual operator at the conformal boundary. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk partition function to a subleading large-N contribution in the boundary partition function. We use this holographic picture to address questions in spectral theory and conformal geometry. As an instance, we compute the type-A Weyl anomaly and the determinant of the iterated Dirac operator on round spheres, express the latter in terms of Barnes' multiple gamma function and gain insight into a conjecture by B\"ar and Schopka.Comment: 11 pages; new comments and references added, typos correcte

    Neural model of dopaminergic control of arm movements in Parkinson’s disease bradykinesia

    Get PDF
    Patients suffering from Parkinson’s disease display a number of symptoms such a resting tremor, bradykinesia, etc. Bradykinesia is the hallmark and most disabling symptom of Parkinson’s disease (PD). Herein, a basal ganglia-cortico-spinal circuit for the control of voluntary arm movements in PD bradykinesia is extended by incorporating DAergic innervation of cells in the cortical and spinal components of the circuit. The resultant model simulates successfully several of the main reported effects of DA depletion on neuronal, electromyographic and movement parameters of PD bradykinesia

    Lower prevalence of hip fractures in foreign-born individuals than in Swedish-born individuals during the period 1987-1999

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the first longitudinal study with a 22-year follow-up, based on a national and complete sample, to determine whether the prevalence of hip fracture and the age when it occurs are influenced by migration and by being foreign-born. Cultural background and environmental factors such as UV-radiation and lifestyle during childhood and adolescence may influence the risk of a hip fracture event later in life. Differences in prevalence might occur between the indigenous population and those who have migrated to a country.</p> <p>Methods</p> <p>The study was based on national population data. The study population consisted of 321,407 Swedish-born and 307,174 foreign-born persons living in Sweden during the period 1987-1999.</p> <p>Results</p> <p>Foreign-born individuals had a reduced risk of hip fracture, with odds ratios (ORs) of 0.47-0.77 for men and 0.42-0.88 for women. Foreign-born women had the hip fracture event at a higher age on average, but a longer time spent in Sweden was associated with a small but significant increase in risk.</p> <p>Conclusions</p> <p>We found that there was a reduced risk of hip fracture in all foreign-born individuals, and that the hip fracture event generally happened at a higher age in foreign-born women. Migration must therefore be considered in relation to the prevalence and risk of hip fracture. Migration can therefore have a positive effect on one aspect of the health of a population, and can influence and lower the total cost of healthcare due to reduced risk and prevalence of hip fracture.</p
    • …
    corecore