98 research outputs found

    Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets

    Get PDF
    We report a computational theoretical investigation of electron spin-flip scattering induced by the electron-phonon interaction in the transition-metal ferromagnets bcc Fe, fcc Co and fcc Ni. The Elliott-Yafet electron-phonon spin-flip scattering is computed from first-principles, employing a generalized spin-flip Eliashberg function as well as ab initio computed phonon dispersions. Aiming at investigating the amount of electron-phonon mediated demagnetization in femtosecond laser-excited ferromagnets, the formalism is extended to treat laser-created thermalized as well as nonequilibrium, nonthermal hot electron distributions. Using the developed formalism we compute the phonon-induced spin lifetimes of hot electrons in Fe, Co, and Ni. The electron-phonon mediated demagnetization rate is evaluated for laser-created thermalized and nonequilibrium electron distributions. Nonthermal distributions are found to lead to a stronger demagnetization rate than hot, thermalized distributions, yet their demagnetizing effect is not enough to explain the experimentally observed demagnetization occurring in the subpicosecond regime.Comment: 14 pages, 8 figures, to appear in PR

    Influence of laser-excited electron distributions on the x-ray magnetic circular dichroism spectra: Implications for femtosecond demagnetization in Ni

    Full text link
    In pump-probe experiments an intensive laser pulse creates non-equilibrium excited electron distributions in the first few hundred femtoseconds after the pulse. The influence of non-equilibrium electron distributions caused by a pump laser on the apparent X-ray magnetic circular dichroism (XMCD) signal of Ni is investigated theoretically here for the first time, considering electron distributions immediately after the pulse as well as thermalized ones, that are not in equilibrium with the lattice or spin systems. The XMCD signal is shown not to be simply proportional to the spin momentum in these situations. The computed spectra are compared to recent pump-probe XMCD experiments on Ni. We find that the majority of experimentally observed features considered to be a proof of ultrafast spin momentum transfer to the lattice can alternatively be attributed to non-equilibrium electron distributions. Furthermore, we find the XMCD sum rules for the atomic spin and orbital magnetic moment to remain valid, even for the laser induced non-equilibrium electron distributions.Comment: 6 pages, 3 figure

    Atomistic simulations of magnetoelastic effects on sound velocity

    Get PDF
    In this work, we leverage atomistic spin-lattice simulations to examine how magnetic interactions impact the propagation of sound waves through a ferromagnetic material. To achieve this, we characterize the sound wave velocity in BCC iron, a prototypical ferromagnetic material, using three different approaches that are based on the oscillations of kinetic energy, finite-displacement derived forces, and corrections to the elastic constants, respectively. Successfully applying these methods within the spin-lattice framework, we find good agreement with the Simon effect including high order terms. In analogy to experiments, morphic coefficients associated with the transverse and longitudinal waves propagating along the [001] direction are extracted from fits to the fractional change in velocity data. The present efforts represent an advancement in magnetoelastic modelling capabilities which can expedite the design of future magneto-acoustic devices

    Ab-initio investigation of phonon dispersion and anomalies in palladium

    Full text link
    In recent years, palladium has proven to be a crucial component for devices ranging from nanotube field effect transistors to advanced hydrogen storage devices. In this work, I examine the phonon dispersion of fcc Pd using first principle calculations based on density functional perturbation theory. While several groups in the past have studied the acoustic properties of palladium, this is the first study to reproduce the phonon dispersion and associated anomaly with high accuracy and no adjustable parameters. In particular, I focus on the Kohn anomaly in the [110] direction.Comment: 19 pages, preprint format, 7 figures, added new figures and discussio

    M\"ossbauer studies of spin- and charge-modulations in BaFe2(As1-xPx)2

    Full text link
    The BaFe2(As1-xPx)2 compounds with x = 0 (parent), x = 0.10 (under-doped), x = 0.31, 0.33, 0.53 (superconductors with Tc = 27.3 K, 27.6 K, 13.9 K, respectively) and x = 0.70, 0.77 (over-doped) have been investigated versus temperature using 57Fe M\"ossbauer spectroscopy. Special attention was paid to regions of the spin-density-wave (SDW) antiferromagnetic order, spin-nematic phase, and superconducting transition. The BaFe2(As0.90P0.10)2 compound exhibits a reduced amplitude of SDW as compared to the parent compound and preserved universality class of two-dimensional magnetic planes with one-dimensional spins. The spin-nematic phase region for x = 0.10 is characterized by an incoherent magnetic order. BaFe2(As0.69P0.31)2 shows coexistence of a weak magnetic order and superconductivity due to the vicinity of the quantum critical point. The charge density modulations in the BaFe2(As0.67P0.33)2 and BaFe2(As0.47P0.53)2 superconductors are perturbed near Tc. Pronounced hump of the average quadrupole splitting across superconducting transition is observed for the system with x = 0.33. The phosphorus substitution increases the Debye temperature of the BaFe2(As1-xPx)2 compound. Moreover, experimental electron charge densities at Fe nuclei in this material conclusively show that it should be recognized as a hole-doped system. The measured M\"ossbauer spectral shift and spectral area are not affected by transition to the superconducting state. This indicates that neither the average electron density at Fe nuclei nor the dynamical properties of the Fe-sublattice in BaFe2(As1-xPx)2 are sensitive to the superconducting transition. Theoretical calculations of hyperfine parameters determining the patterns of M\"ossbauer spectra of BaFe2(As1-xPx)2 with x = 0, 0.31, 0.5, and 1.0 are performed within the framework of the density functional theory

    MAELAS 2.0: A new version of a computer program for the calculation of magneto-elastic properties

    Full text link
    MAELAS is a computer program for the calculation of magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way. The method originally implemented in version 1.0 of MAELAS was based on the length optimization of the unit cell, proposed by Wu and Freeman, to calculate the anisotropic magnetostrictive coefficients. We present here a revised and updated version (v2.0) of MAELAS, where we added a new methodology to compute anisotropic magnetoelastic constants from a linear fitting of the energy versus applied strain. We analyze and compare the accuracy of both methods showing that the new approach is more reliable and robust than the one implemented in version 1.0, especially for non-cubic crystal symmetries. This analysis also help us to find that the accuracy of the method implemented in version 1.0 could be improved by using deformation gradients derived from the equilibrium magnetoelastic strain tensor, as well as potential future alternative methods like the strain optimization method. Additionally, we clarify the role of the demagnetized state in the fractional change in length, and derive the expression for saturation magnetostriction for polycrystals with trigonal, tetragonal and orthorhombic crystal symmetry. In this new version, we also fix some issues related to trigonal crystal symmetry found in version 1.0

    Automated calculations of exchange magnetostriction

    Full text link
    We present a methodology based on deformations of the unit cell that allows to compute the isotropic magnetoelastic constants, isotropic magnetostrictive coefficients and spontaneous volume magnetostriction associated to the exchange magnetostriction. This method is implemented in the python package MAELAS (v3.0), so that it can be used to obtain these quantities by first-principles calculations and classical spin-lattice models in an automated way. We show that the required reference state to obtain the spontaneous volume magnetostriction combines the equilibrium volume of the paramagnetic state and magnetic order of the ground state. The presented computational tool may be helpful to provide a better understanding and characterization of the relationship between the exchange interaction and magnetoelasticity

    Crystal field splitting is limiting the stability and strength of ultra-incompressible orthorhombic transition metal tetraborides

    Get PDF
    PubMed ID: 26976479The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids.Web of Science6art. no. 2308

    Elastic constants and volume changes associated with two high-pressure rhombohedral phase transformations in vanadium

    Get PDF
    We present results from ab initio calculations of the mechanical properties of the rhombohedral phase (beta) of vanadium metal reported in recent experiments, and other predicted high-pressure phases (gamma and bcc), focusing on properties relevant to dynamic experiments. We find that the volume change associated with these transitions is small: no more than 0.15% (for beta - gamma). Calculations of the single crystal and polycrystal elastic moduli (stress-strain coefficients) reveal a remarkably small discontinuity in the shear modulus and other elastic properties across the phase transitions even at zero temperature where the transitions are first order.Comment: 6 pages, 3 figure
    corecore