215 research outputs found

    New Trends in Multiscale and Multiphysics Simulation of Transport Phenomena in Novel Engineering Systems

    Get PDF
    The paper reports on the progress made in predicting large- and small-scale single and two-phase flows with heat transfer using the CMFD code TransAT. In the multi-phase context, the code uses the Level Set approach as the “Interface Tracking Method” of reference. The solver incorporates phase-change capabilities, surface tension and triple-line dynamics models, Marangoni effects, electric and magnetic fields, and a wall micro-film sub-grid scale model for lubrication. Complex 3D examples shown here were treated using a fully automatized version of the code, using the Immersed Surfaces Technique (IST) to map complex components into a simple rectangular Cartesian grid. It is shown that real coupled two-phase heat transfer (conjugate) problems are within reach of modern CMFD code using interface tracking, with relatively fast response times: 3D coupled two-phase flow heat transfer can run on a simple Linux PC cluster within 24 H time

    DNS and LES of turbulent flow in a closed channel featuring a pattern of hemispherical roughness elements

    Get PDF
    Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) were performed for fully-developed turbulent flow in channels with smooth walls and walls featuring hemispherical roughness elements at shear Reynolds numbers Reτ = 180 and 400, with the goal of studying the effect of these roughness elements on the wall-layer structure and on the friction factor. The LES and DNS approaches were verified first by comparison with existing DNS databases for smooth walls. Then, a parametric study for the hemispherical roughness elements was conducted, including the effects of shear Reynolds number, normalized roughness height (kâș = 10–20) and relative roughness spacing (sâș/kâș = 2–6). The sensitivity study also included the effect of distribution pattern (regular square lattice vs. random pattern) of the roughness elements on the walls. The hemispherical roughness elements generate turbulence, thus increasing the friction factor with respect to the smooth-wall case, and causing a downward shift in the mean velocity profiles. The simulations revealed that the friction factor decreases with increasing Reynolds number and roughness spacing, and increases strongly with increasing roughness height. The effect of random element distribution on friction factor and mean velocities is however weak. In all cases, there is a clear cut between the inner layer near the wall, which is affected by the presence of the roughness elements, and the outer layer, which remains relatively unaffected. The study reveals that the presence of roughness elements of this shape promotes locally the instantaneous flow motion in the lateral direction in the wall layer, causing a transfer of energy from the streamwise Reynolds stress to the lateral component. The study indicates also that the coherent structures developing in the wall layer are rather similar to the smooth case but are lifted up by almost a constant wall-unit shift yâș(∌10–15), which, interestingly, corresponds to the relative roughness kâș = 10

    Turbulent transport mechanisms in oscillating bubble plumes

    Get PDF
    The detailed investigation of an unstable meandering bubble plume created in a 2-m-diameter vessel with a water depth of 1.5 m is reported for void fractions up to 4% and bubble size of the order of 2.5 mm. Simultaneous particle image velocity (PIV) measurements of bubble and liquid velocities and video recordings of the projection of the plume on two vertical perpendicular planes were produced in order to characterize the state of the plume by the location of its centreline and its equivalent diameter. The data were conditionally ensemble averaged using only PIV sets corresponding to plume states in a range as narrow as possible, separating the small-scale fluctuations of the flow from the large-scale motions, namely plume meandering and instantaneous cross-sectional area fluctuations. Meandering produces an apparent spreading of the average plume velocity and void fraction profiles that were shown to remain self-similar in the instantaneous plume cross-section. Differences between the true local time-average relative velocities and the difference of the averaged phase velocities were measured; the complex variation of the relative velocity was explained by the effects of passing vortices and by the fact that the bubbles do not reach an equilibrium velocity as they migrate radially, producing momentum exchanges between high- and low-velocity regions. Local entrainment effects decrease with larger plume diameters, contradicting the classical dependence of entrainment on the time-averaged plume diameter. Small plume diameters tend to trigger ‘entrainment eddies' that promote the inward-flow motion. The global turbulent kinetic energy was found to be dominated by the vertical stresses. Conditional averages according to the plume diameter showed that the large-scale motions did not affect the instantaneous turbulent kinetic energy distribution in the plume, suggesting that large scales and small scales are not correlated. With conditional averaging, meandering was a minor effect on the global kinetic energy and the Reynolds stresses. In contrast, plume diameter fluctuations produce a substantial effect on these quantitie

    Enabling Cloud-based Computational Fluid Dynamics with a Platform-as-a-Service Solution

    Get PDF
    Computational Fluid Dynamics (CFD) is widely used in manufacturing and engineering from product design to testing. CFD requires intensive computational power and typically needs high performance computing to reduce potentially long experimentation times. Dedicated high performance computing systems are often expensive for small-to-medium enterprises (SMEs). Cloud computing claims to enable low cost access to high performance computing without the need for capital investment. The CloudSME Simulation Platform aims to provide a flexible and easy to use cloud-based Platform-as-a-Service (PaaS) technology that can enable SMEs to realize the benefits of high performance computing. Our Platform incorporates workflow management and multi-cloud implementation across various cloud resources. Here we present the components of our technology and experiences in using it to create a cloud-based version of the TransAT CFD software. Three case studies favourably compare the performance of a local cluster and two different clouds and demonstrate the viability of our cloud-based approach

    Turbulent transport mechanisms in oscillating bubble plumes

    Full text link

    ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis

    Get PDF
    Adventitious root initiation (ARI) is ade novoorganogenesis program and a key adaptive trait in plants. Several hormones regulate ARI but the underlying genetic architecture that integrates the hormonal crosstalk governing this process remains largely elusive. In this study, we use genetics, genome editing, transcriptomics, hormone profiling and cell biological approaches to demonstrate a crucial role played by the APETALA2/ETHYLENE RESPONSE FACTOR 115 transcription factor. We demonstrate that ERF115 functions as a repressor of ARI by activating the cytokinin (CK) signaling machinery. We also demonstrate thatERF115is transcriptionally activated by jasmonate (JA), an oxylipin-derived phytohormone, which represses ARI in NINJA-dependent and independent manners. Our data indicate that NINJA-dependent JA signaling in pericycle cells blocks early events of ARI. Altogether, our results reveal a previously unreported molecular network involving cooperative crosstalk between JA and CK machineries that represses ARI

    The STAR Silicon Strip Detector (SSD)

    Full text link
    The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl
    • 

    corecore