549 research outputs found

    Il finanziamento della societ\ue0 cooperativa

    Get PDF
    L'articolo analizza quel complesso sistema normativo che consente alle cooperative di accedere alle risorse finanziarie indispensabili per la loro crescita e la loro competitivit\ue0. Una specifica disciplina \ue8 stata predisposta nell\u2019ambito della riforma del diritto societario del 2003, in risposta a esigenze da tempo avvertite ed inerenti la sottocapitalizzazione delle imprese cooperative. Attraverso la disanima delle norme vigenti in materia ed approfondendo i profili problematici connesse alle stesse, il saggio propone la tesi che evidenzia l\u2019ampia autonomia concessa dal legislatore alle cooperative, in particolare alle cooperative per azioni, nel creare gli strumenti finanziari pi\uf9 idonei alle loro esigenze

    Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach

    Get PDF
    In this paper we consider the problem of deriving approximate autonomous dynamics for a number of variables of a dynamical system, which are weakly coupled to the remaining variables. In a previous paper we have used the Ruelle response theory on such a weakly coupled system to construct a surrogate dynamics, such that the expectation value of any observable agrees, up to second order in the coupling strength, to its expectation evaluated on the full dynamics. We show here that such surrogate dynamics agree up to second order to an expansion of the Mori-Zwanzig projected dynamics. This implies that the parametrizations of unresolved processes suited for prediction and for the representation of long term statistical properties are closely related, if one takes into account, in addition to the widely adopted stochastic forcing, the often neglected memory effects.Comment: 14 pages, 1 figur

    Effects of stochastic parametrization on extreme value statistics

    Get PDF
    Extreme geophysical events are of crucial relevance to our daily life: they threaten human lives and cause property damage. To assess the risk and reduce losses, we need to model and probabilistically predict these events. Parametrizations are computational tools used in the Earth system models, which are aimed at reproducing the impact of unresolved scales on resolved scales. The performance of parametrizations has usually been examined on typical events rather than on extreme events. In this paper, we consider a modified version of the two-level Lorenz’96 model and investigate how two parametrizations of the fast degrees of freedom perform in terms of the representation of extreme events. One parametrization is constructed following Wilks [Q. J. R. Meteorol. Soc. 131, 389–407 (2005)] and is constructed through an empirical fitting procedure; the other parametrization is constructed through the statistical mechanical approach proposed by Wouters and Lucarini [J. Stat. Mech. Theory Exp. 2012, P03003 (2012); J. Stat. Phys. 151, 850–860 (2013)]. The two strategies show different advantages and disadvantages. We discover that the agreement between parametrized models and true model is in general worse when looking at extremes rather than at the bulk of the statistics. The results suggest that stochastic parametrizations should be accurately and specifically tested against their performance on extreme events, as usual optimization procedures might neglect them. The provision of accurate parametrizations is a task of paramount importance in many scientific areas and specifically in weather and climate modeling. Parametrizations are needed for representing accurately and efficiently the impact of the scales of motions and of the processes that cannot be explicitly represented by the numerical model. Parametrizations are usually constructed in order to optimize the overall performance of the model, thus aiming at an accurate representation of the bulk of the statistics. Nonetheless, numerical models are key to estimating, anticipating, and predicting extreme events. Here, we analyze critically in a simple yet illustrative example the performance of parametrizations in describing extreme events, and we conclude that good performance on typical conditions cannot be in any way extrapolated for rare conditions, which could, nonetheless, be of great practical relevance

    Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes

    Get PDF
    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces

    Universal Properties of Nonlinear Response Functions of Nonequilibrium Steady States

    Full text link
    We derive universal properties of nonlinear response functions of nonequilibrium steady states. In particular, sum rules and asymptotic behaviors are derived. Their consequences are illustrated for nonlinear optical materials and nonlinear electrical conductors.Comment: 10 pages, 1 figure; added a few sentences and references to explain detail

    News on immune checkpoint inhibitors as immunotherapy strategies in adult and pediatric solid tumors

    Get PDF
    Immune checkpoint inhibitors (ICIs) have shown unprecedented benefits in various adult cancers, and this success has prompted the exploration of ICI therapy even in childhood malignances. Although the use of ICIs as individual agents has achieved disappointing response rates, combinational therapies are likely to promise better results. However, only a subset of patients experienced prolonged clinical effects, thus suggesting the need to identify robust bio-markers that predict individual clinical response or resistance to ICI therapy as the main challenge. In this review, we focus on how the use of ICIs in adult cancers can be translated into pediatric malignances. We discuss the physiological mechanism of action of each IC, including PD-1, PD-L1 and CTLA-4 and the new emerging ones, LAG-3, TIM-3, TIGIT, B7-H3, BTLA and IDO-1, and evaluate their prognostic value in both adult and childhood tumors. Furthermore, we offer an overview of preclinical models and clinical trials currently under investigation to improve the effectiveness of cancer immunotherapies in these patients. Finally, we outline the main predictive factors that influence the efficacy of ICIs, in order to lay the basis for the development of a pan-cancer immunogenomic model, able to direct young patients towards more specific immunotherapy

    Predicting climate change using response theory: global averages and spatial patterns

    Get PDF
    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(105105) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO22 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change

    Multistability and Intermediate Tipping of the Atlantic Ocean Circulation

    Full text link
    Tipping points (TP) in climate sub-systems are usually thought to occur at a well-defined, critical forcing parameter threshold, via destabilization of the system state by a single, dominant positive feedback. However, coupling to other sub-systems, additional feedbacks, and spatial heterogeneity may promote further small-amplitude, abrupt reorganizations of geophysical flows at forcing levels lower than the critical threshold. Using a primitive-equation ocean model we simulate a collapse of the Atlantic Meridional Overturning Circulation (AMOC) due to increasing glacial melt. Considerably prior to the collapse, various abrupt, qualitative changes in AMOC variability occur. These intermediate tipping points (ITP) are transitions between multiple stable circulation states. Using 2.75 million years of model simulations, we uncover a very rugged stability landscape featuring parameter regions of up to nine coexisting stable states. The path to an AMOC collapse via a sequence of ITPs depends on the rate of change of the meltwater input. This challenges our ability to predict and define safe limits for TPs

    Response operators for Markov processes in a finite state space: radius of convergence and link to the response theory for Axiom A systems

    Get PDF
    Using straightforward linear algebra we derive response operators describing the impact of small perturbations to finite state Markov processes. The results can be used for studying empirically constructed—e.g. from observations or through coarse graining of model simulations—finite state approximation of statistical mechanical systems. Recent results concerning the convergence of the statistical properties of finite state Markov approximation of the full asymptotic dynamics on the SRB measure in the limit of finer and finer partitions of the phase space are suggestive of some degree of robustness of the obtained results in the case of Axiom A system. Our findings give closed formulas for the linear and nonlinear response theory at all orders of perturbation and provide matrix expressions that can be directly implemented in any coding language, plus providing bounds on the radius of convergence of the perturbative theory. In particular, we relate the convergence of the response theory to the rate of mixing of the unperturbed system. One can use the formulas derived for finite state Markov processes to recover previous findings obtained on the response of continuous time Axiom A dynamical systems to perturbations, by considering the generator of time evolution for the measure and for the observables. A very basic, low-tech, and computationally cheap analysis of the response of the Lorenz ’63 model to perturbations provides rather encouraging results regarding the possibility of using the approximate representation given by finite state Markov processes to compute the system’s response
    • …
    corecore