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Abstract

In this paper we consider the problem of deriving approximate au-
tonomous dynamics for a number of variables of a dynamical system,
which are weakly coupled to the remaining variables. In a previous paper
we have used the Ruelle response theory on such a weakly coupled sys-
tem to construct a surrogate dynamics, such that the expectation value
of any observable agrees, up to second order in the coupling strength, to
its expectation evaluated on the full dynamics. We show here that such
surrogate dynamics agree up to second order to an expansion of the Mori-
Zwanzig projected dynamics. This implies that the parametrizations of
unresolved processes suited for prediction and for the representation of
long term statistical properties are closely related, if one takes into ac-
count, in addition to the widely adopted stochastic forcing, the often
neglected memory effects.

1 Introduction

The investigation of multi-level systems is of primary interest for mathematics as
well as for natural and social sciences, and is a central task of complexity science.
In multi-level systems it is possible to separate the variables into at least two
subsets, such that the variables within each subset are strongly coupled, while
variables belonging to different subsets have a much weaker coupling.

In most practical cases the dynamics of each level take place in distinct spa-
tial and temporal scales, so that it is hard to define an optimal resolution for all
the variables when we attempt to simulate the system or collect data [10]. Usu-
ally, one is interested in devising ways to account, at least approximately, for the
impact of fast processes occurring at small spatial scales on slow variables, often
describing large scale features, thus defining an effective autonomous dynamics
for the slow variables.
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If one assumes a vast time-scale separation between the slow variables X and
the fast variables Y , the averaging method [5, 17] allows for deriving a dynamics
for the X variables. Abramov [1] has recently presented an application of this
method to deriving a simplified dynamics for a system of geophysical relevance.
Furthermore, projector operator techniques have been introduced in statistical
mechanics with the goal of effectively removing the Y variables. In particular,
considerable interest has been raised by the Mori-Zwanzig approach, through
which a formal - albeit practically inaccessible - solution for the evolution of the
X variables is derived [38].

In a previous paper [36] we have approached the problem of defining an
accurate effective dynamics for the X variable by focusing on the statistical
properties of an observable A(X) rather than on its trajectory. The starting
point has been assuming that the coupling between the X and Y variables
is weak, and treating such a coupling as a perturbation to the autonomous
dynamics of the X and Y variables, treated as unperturbed system. We have
then adopted the response theory developed by Ruelle [29, 32, 19], which allows
to compute explicitly how the long-time averages of Axiom A dynamical systems
change as a result of small perturbations to the flow [27, 6, 2, 20, 22]. The Axiom
A class of systems, even if mathematically non-generic, is nevertheless assumed
to serve as a good model for general physical systems, as is put forward by
the chaotic hypothesis [12, 11], which can be interpreted as an extension of the
ergodic hypothesis to non-Hamiltonian systems [13]. A detailed discussion of
the relevance of the Axiom A dynamical systems for the description of actual
physical processes is given in [19, 22]. Thus, we have derived explicit formulas
to compute the changes in the expectation value of A(X) up to the second order
in the coupling strength between the X and Y variables. Moreover, we have
been able to derive a surrogate perturbed dynamics for the system X such that
up to second order the expectation value of A(X) is the same as that of the
fully coupled (X,Y ) system, thus deriving an explicit parametrization of the
coupling. The correction due to the coupling entail a deterministic contribution
to the dynamics, a stochastic forcing expressed as a sum of multiplicative noise
terms, and an integral expression which describes a memory term.

A question left open in [36] was the link between the surrogate dynamics for
the X subsystem and the exact dynamics one would obtain by giving an ex-
plicit representation of the Mori-Zwanzig projection operator. Whereas we have
shown that the proposed dynamics generate expectation values that are close to
those of the fully coupled system, there may be many possible parametrizations
that have this property. It is unclear to what extent the surrogate and full
dynamics are related and whether they are close to each other. It is possible to
construct a simplified model which reproduces well the statistical properties of
the full model without describing well its time evolution. We anticipate that this
paper gives the comforting answer that, indeed, the surrogate dynamics derived
in [36] and the dynamics projected using the Mori-Zwanzig operator are iden-
tical up to second order of perturbation. As we will discuss in the conclusions,
the fact that both the invariant measure and the dynamics of the full system
are well approximated and the fact that a smoothing stochastic noise term is
present, suggests the possibility of applying applying the fluctuation-dissipation
theorem (FDT) for relating response and fluctuations of the X variables. This
addresses some of the questions raised in [31, 32], [19, 20], [22], and [7].

Our results rely on the presence of a relatively weak coupling, and not on
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the presence of a large time scale separation. Therefore, they may be of interest
for a large number of complex systems. As a specific application, we wish to
propose the derivation of parametrizations in geophysical fluid dynamics, where
the simulation of long-term properties is the goal of climate modelling and the
simulation of short-term behaviour is the problem of interest for weather fore-
cast models. Geophysical fluid systems feature a very large range of time and
space scales [21, 34], so parametrizations of unresolved small scales are necessary
in numerical experiments [24, 35, 16, 15, 5, 33]. Many of the approaches used
up to now have been inspired by techniques coming from statistical mechanics,
where a time scale separation between microscopic and macroscopic processes
is often justifiable. In geophysical fluid systems, however, there is no such clear
separation between time scales and hence the requirements for disregarding the
memory term do not hold. Whereas deterministic and stochastic parametriza-
tions are by now common in geophysical fluid dynamical models [25], memory
effects are not incorporated. A final motivation for our current study of the
connection between the long term statistics and dynamics is the increasing con-
vergence between climate and weather prediction models. On the one hand
there is the growing practice of benchmarking climate models by testing their
prediction skill for weather forecast [28], while on the other hand there is an
increasing interest in seamless prediction models [26], that have a prediction
range from days to years and longer.

This article is structured as follows. In Section 2 we present the Dyson
expansion for the evolution of the unperturbed and perturbed flows, and provide
a way to treat in a unified way the Mori-Zwanzig and Ruelle’s approaches. In
particular, we present a formal derivation of the Ruelle’s response formulas,
which provides a simple way to derive the non-perturbative correction for the
statistical properties of a general observable, and present the Mori-Zwanzig
projection operator technique. In Section 3 we then use this approach to deal
with multi-level systems, thus deriving the explicit expression of the projected
dynamics for the X subsystem according to the Mori-Zwanzig formalism up to
the second order of perturbation due to the coupling with the Y subsystem.
We show that such approximate dynamics agrees with what was obtained in
[36] using the Ruelle formalism. In Section 4 we present our conclusions and
perspectives for future work.

2 Expanding perturbed flows and averages

Given a dynamical system ẋ = F (X), one can define a linear differential op-
erator L = (F.∇) describing the evolution of observables, i.e. Ȧ = LA. For-
mally, the solution of A over time is then given by A(t) = Π(t)A(0) where
Π(t) = exp(Lt), . Both the Mori-Zwanzig projection operator technique [23, 37]
and the response theory of natural invariant measures [29] feature an expansion
of evolution operators Π(t). As described in e.g. [9], these relations can be eas-
ily derived formally in the resolvent formalism, by taking the Laplace transform
of such operator exponentials:

L{Π}(s) =

∫ ∞
0

dt exp(Lt) exp(−ts) = (s− L)−1 (1)
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If L consists of a perturbation around an operator L0, i.e. L = L0 + L1, with
L1 small in an appropriate sense, we can expand the Laplace transform using
the equality

(A+B)−1 = A−1 −A−1B(A+B)−1 . (2)

In the case of the Laplace transform in Eq. 1, we take A = s−L0 and B = −L1,
so that the A−1 and (A + B)−1 terms are themselves Laplace transforms of
Π0(t) = exp(L0t) and Π(t) respectively. Making use of a non-commutative
version of the fact that the Laplace transform of a convolution is the product of
the transform, this results in the following expansion of the evolution operator
Π(t):

Π(t) = Π0(t) +

∫ t

0

dτΠ0(t− τ)L1Π(τ) (3)

Another expansion can be obtained when making use of the following equal-
ity for operator inverses:

(A+B)−1 = A−1 − (A+B)−1BA−1 . (4)

This gives rise to the following decomposition of Π(t):

Π(t) = Π0(t) +

∫ t

0

dτΠ(t− τ)L1Π0(τ) (5)

2.1 Projection operator techniques

In the case of Mori-Zwanzig a projection is carried out on the level of the observ-
ables to remove unwanted, irrelevant and usually fast degrees of freedom. Here
the expansion is performed around the evolution that involves only the relevant
part of the phase space. If a dynamical system is defined on a Hilbert space Z
with a relevant subspace X and its orthogonal complement Y = X⊥, then one
defines a projection P of functions on the full phase space to functions on the
restricted phase space X . For example, one can take a conditional expectation
with respect to a measure on Z:

(PA)(x) =

∫
Y A(x, y)ρ(x, y)dy∫
Y ρ(x, y)dy

.

The derivation given by Zwanzig in Chapter 8 of [38] for a generalized Langevin
equation is based on Eq. 5. We write the Liouville equation for an observable
A as

dA(t)

dt
= LA(t) = etLLA = etL(P +Q)LA

with Q = 1 − P. The factor exp(tL) in the term involving Q can be further
expanded by making use of Eq. 5 with L0 = QL. This gives the following
equation

dA(t)

dt
= etLPLA+ (etQL +

∫ t

0

ds e(t−s)LPLesQL)QLA
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In [38] it is argued that this equation is a generalization of the Langevin equa-
tion, where the second term is a correlated noise term dependent on the initial
conditions of the irrelevant degrees of freedom and the third term represent the
memory of the system due to the presence of irrelevant variables that have in-
teracted with the relevant ones in the past. If there is a time scale difference
between relevant and irrelevant variables the noise becomes white, while the
memory term can in this case be neglected, as the irrelevant variables decorre-
late quickly.

2.2 Response theory

The goal of response theory on the other hand is to describe changes in the
averages of observables of dynamical systems over a long period of time:

ρ̃(A) = lim
T→∞

1

T

∫ T

0

dtA(x(t)) = lim
T→∞

1

T

∫ T

0

dtΠ(t)A(x(0)) (6)

We again assume that the operator L that determines Π consists of a perturba-
tion around an unperturbed evolution: L = L0 +L1, meaning that we can make
use of the expansions 3 and 5 to expand Π(t) around Π0(t). The perturbing
operator L1 can derive from an external forcing, or as we will later see from a
coupling of internal degrees of freedom. The averages of an observable A for the
unperturbed evolution, corresponding to L0 and Π0, will be denoted by ρ(A).

We present here a different derivation than the one in [36], where the response
formula was derived by iterating Eq. 3 to obtain the response terms at different
orders in L1. These terms can then be summed over all orders to obtain an
expression for the full change in expectation value (as in [30]). Here instead
we will first derive the equation expressing the full change in expectation value,
which can then be expanded in orders of the perturbation.

By inserting Eq. 5 into Eq. 6, we have that

ρ̃(A) = ρ(A) + lim
T→∞

1

T

∫ T

0

dt

∫ t

0

dτΠ(τ)L1Π0(t− τ)A(x(0)) (7)

= ρ(A) + lim
T→∞

1

T

∫ T

0

dτ

∫ T−τ

0

dtΠ(τ)L1Π0(t)A(x(0)) (8)

= ρ(A) + ρ̃

(∫ ∞
0

dtL1Π0(t)A

)
(9)

or

ρ̃(A) = ρ

((
1−

∫ ∞
0

dtL1Π0(t)

)−1
A

)
(10)

By expanding the resolvent operator, one gets the response terms at different
orders of L1:

ρ̃(A) = ρ(A) + ρ

(∫ ∞
0

dt1L1Π0(t1)A

)
+ ρ

(∫ ∞
0

dt1

∫ ∞
0

dt2L1Π0(t1)L1Π0(t2)A

)
+ . . . (11)

This expression is identical to those in [30].
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3 Coupled systems

The response theory described in Section 2.2 is quite general, in the sense that
we have not defined the form of the perturbing operator L1. The perturbation
can be a specified external forcing or an internal coupling of degrees of freedom.
Here we choose the latter in order to make the comparison to the Mori-Zwanzig
formalism. The dynamical system is given by an uncoupled vector field F and
a coupling function Ψ:

dX

dt
= FX(X) + ΨX(Y )

dY

dt
= FY (Y ) + ΨY (X) (12)

Writing this in terms of observables, we have

dA(X,Y )

dt
=(LX(X,Y ) + LY (X,Y ))A(X,Y )

=(FX(X) + ΨX(Y )).∇XA(X,Y )

+ (FY (Y ) + ΨY (X)).∇YA(X,Y )

where ∇X and ∇Y denote the gradients with respect to the variables in X and
in Y respectively, LX = (FX + ΨX)∇X and LY = (FY + ΨY )∇Y .

3.1 Response theory

The response of the unperturbed system to the coupling can be calculated by
taking L0 = FX(X).∇X + FY (Y ).∇Y and L1 = ΨX(Y ).∇X + ΨY (X).∇Y .

By Eq. 11, the n-th order contribution to the response is calculated by inte-
grating the impact of all n-time couplings over the times between the coupling
interactions:

δ(n)ρ(A) =

∫ ∞
0

dτ1 . . . τn
∑

i1,...,in
∈{X,Y }

δ(n)ρ(A|i1, τ1; . . . ; in, τn) (13)

where

δ(n)ρ(A|i1, τ1; . . . ; in, τn) =

∫
ρ0(dx)L1,i1Π0(τ1)L1,i2Π0(τ2) . . . L1,inΠ0(τn)A(x)

where x = (X,Y ) and L1,i represents an interaction affecting the X or Y sub-
system, depending on the subscript:

L1,X = ΨX(Y )∇X
L1,Y = ΨY (X)∇Y (14)

Any infinitesimal contribution to the response can hence be seen as a sequence
of couplings that are activated subsequently (i1 to in) and the times between
the interactions (τ1 to τn) as depicted in Figure 1.

If one chooses as observable a function AX that is only dependent on X, all
response contributions up to second order are δ(1)ρ(AX |X, τ), δ(2)ρ(AX |Y, τ1;X, τ2)
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(a) (b)

(c)

Figure 1: Diagrams representing the response terms δ(1)ρ(AX |X, τ) (diagram
(a)), δ(2)ρ(AX |Y, τ2;X, τ1) (diagram (b)) and δ(2)ρ(AX |X, τ2;X, τ1) (diagram
(c)).

and δ(2)ρ(AX |X, τ1;X, τ2). The first order term δ(1)ρ(A|X, τ) is given by

δ(1)ρ(A|X, τ) =

∫
ρ0(dx)LXΠ(τ)AX(x)

=ρ0,Y (ΨX(Y ))ρ0,X(∇XAX(fτ (X))) .

The δ(2)ρ(AX |Y, τ1;X, τ2) and δ(2)ρ(AX |X, τ1;X, τ2) terms give

δ(2)ρ(AX |Y, τ1;X, τ2)

= ρ0,Y (∇Y ΨX(fτ1(Y ))) ρ0,X (ΨY (X)∇X(AX ◦ fτ2)(fτ1(X)))

δ(2)ρ(AX |X, τ1;X, τ2)

= ρ0,Y (ΨX(Y )ΨX(fτ1(Y ))) ρ0,X (∇X(∇X(AX ◦ fτ2 )(fτ1(X)))

Note that since we perturb around the uncoupled system, the unperturbed
measure ρ0 is a product of invariant measures ρ0,X and ρ0,Y on the X and
Y subsystems. For this reason and since the operators in 14 are products of a
multiplication and derivation operators that commute whenever the dependence
is on different variables, each response term can be written as a product of a
ρ0,X and ρ0,Y average.

As we have shown in [36], if one collects these first and second order re-
sponses to the coupling Ψ, an identical change in expectation values from the
unperturbed ρ0 can be obtained by adding a Y -independent perturbing operator
L1,p to the uncoupled L0. It was demonstrated that this can be accomplished
by the following dynamical system:

dX(t)

dt
= FX(X(t)) +M(X(t)) + σj(t) +

∫ ∞
0

dτh(τ,X(t− τ)) (15)
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where σ mimics the correlations present in the fluctuations of the coupling from
its uncoupled mean:

〈σj(t)σl(t+ τ)〉 = ρY (Ψ′X(Y )Ψ′X(fτY (Y ))) , (16)

〈σj(t)〉 = 0

Ψ′X(Y ) = ΨX(Y )− ρY (ΨX) .

and h is a kernel representing the memory effected by the presence of unresolved
variables. Here fτY denotes the uncoupled evolution of Y generated by FY .

The memory term h is given by

h(τ,X) = ΨY (X)ρY (∇Y ΨX(fτY (Y ))) . (17)

TheM term derives from δ(1)ρ(AX |X, τ), the σ term from δ(2)ρ(AX |X, τ1;X, τ2)
and the h term from δ(2)ρ(AX |Y, τ1;X, τ2).

It should be noted that the choice of parametrization is not unique. Any
time-dependent forcing σ with the correct two-point time-correlations will give
the right response up to second order. Also for the memory term there is some
freedom. One can also use

dX(t)

dt
= FX(X(t)) +M(X(t)) + σj(t) +

∫ ∞
0

dτh(τ, f
(t−τ)
X (X0)) (18)

as X(t − τ) is to zeroth order in Ψ equal to f
(t−τ)
X (X0). Hence the difference

between the two parametrizations will be of order Ψ3.

3.2 Direct derivation of surrogate dynamics

We now do a calculation in the style of the Mori-Zwanzig one in Section 2.1 for
the dynamical system given in Eq. 12 and for observables AX that only depend
on the relevant variables X. As in Section 2.1, we first do a projection of the
evolution equation of AX to separate X and Y and then expand the evolution
of Y .

The evolution equation for AX is given by

(
d

dt
AX)(X,Y, t)|t=0 = (LXAX)(X,Y ) = ((PLX +QLX)AX)(X,Y )

= (FX(X) + ρY (ΨX) + (ΨX(Y )− ρY (ΨX)))∇XAX(X)
(19)

where PA(X,Y ) =
∫
Y ρY (dY )A(X,Y ). We assume that X and Y start in X0

and Y0 at time −t. We want to find a formal solution for ΨX(Y ) that we can
insert into the previous equation.

The evolution of ΨX is given by

ΨX(Y ) =et(LX+LY )ΨX(X0, Y0,−t)
=et(LX+LY )ΨX(Y0)

Making use of the decomposition of the Liouvillian L = LX+LY into L0(X0, Y0) =
FX(X0)∇X + FY (Y0)∇Y and L1(X0, Y0) = ΨX(Y0)∇X + ΨY (X0)∇Y , we get
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by repeated use of Eq. 3 that

ΨX(Y ) =et(L0+L1)ΨX(Y0)

=etL0ΨX(Y0) +

∫ t

0

dτe(t−τ)L0L1e
τL0ΨX(Y0) +O(L2

1) (20)

Inserting this equation in (19), we get

(
d

dt
AX)(X,X0, Y0, t)|t=0

=

(
FX(X) + ρY (ΨX) + σ̃(t, Y0) +

∫ t

0

dτh̃(t, τ,X0, Y0)

)
∇XAX(X))

where

σ̃(t, Y0) =etFY (Y0)∇Y ΨX(Y0)− ρY (ΨX)

h̃(t, τ,X0, Y0) =e(t−τ)L0(X0,Y0)L1(X0, Y0)eτL0(X0,Y0)ΨX(Y0)

Due to the commutation of FX∇X and FY∇Y , we have that

h̃ =e(t−τ)(FX∇X+FY∇Y )(ΨX(Y0)∇X + ΨY (X0)∇Y )eτFY∇Y ΨX(Y0)

=
(
e(t−τ)FX∇X ΨY (X0)

)
e(t−τ)FX∇X∇Y eτFY∇Y ΨX(Y0)

If the coupled system is initialized in its stationary state, to zeroth order in Ψ,
the Y variable is distributed according to ρY , the invariant measure under the
flow generated by FY . The average of σ̃ is then zero and the auto-correlation is
equal to that of σ given before in Eq. 16:

ρY (σ̃(t, Y0)) = 0

ρY (σ̃(t, Y0)σ̃(t+ τ, Y0)) = ρY
(
ΨX(Y0)eτFY∇Y ΨX(Y0)

)
and

ρY (h̃) = ΨY (f t−τX (X0))ρY
(
∇Y eτFY∇Y ΨX(Y0)

)
(21)

This gives us the memory term of Eq. 18.

4 Summary and Conclusions

The first new result in this paper is a simple formal derivation of the Ruelle
response theory [29, 32, 19] describing how the statistical properties of Axiom
A systems are changed when the underlying dynamics is altered. We do not
address issues of convergence, but simply present a simpler way of deriving the
results, under the assumption that the integrals involved converge. We have
shown that it is possible to obtain directly the exact expression for the expecta-
tion value of an observable A computed according to the invariant probability
measure of the altered dynamics as the expectation value of another suitably
defined observable computed according to the invariant probability measure of
the unperturbed dynamics. Such an expression can be expanded at all orders
of perturbations, with the general term of order n corresponding exactly to the
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nth order term obtained by Ruelle through perturbative expansion. Unsurpris-
ingly, the exact result obtained through direct calculation agrees with what was
derived by Ruelle through summation of the perturbative series [29].

The Dyson expansion has been instrumental in approaching the problem
of studying multi-level systems, by providing a peturbative expansion for the
Mori-Zwanzig projection operator [38]. Denoting by X the subset of variables
we are interested into and by Y the subset of variables we want to project out,
we have derived the effective projected dynamics describing the evolution of an
observable of the X variables only up to second order of perturbation. Such
a dynamics is identical to the surrogate dynamics for the X variables derived
in [36] by imposing, using the Ruelle response theory to describe the impact
of the coupling of the X and Y variables, that the expectation value of any
observable A = A(X) evaluated on the invariant measure corresponding to the
surrogate dynamics agrees up to second order of perturbation to its expectation
value evaluated over the complete (X,Y ) system. It is important to note that,
as discussed in [36], the surrogate dynamics is not unique, because we require
agreement only up to second order. This result provides a connection between
the Mori-Zwanzig and Ruelle formalisms, which are seemingly different, the first
one pertaining to trajectories, the second one to expectation values: we have
that if we are able to follow closely (on average) the individual trajectories,
we are also able to model effectively the long-term statistical properties. Such
a link between our ability to represent, in some sense, equally well, local and
global properties in the phase space strongly relies on the fact that the projec-
tion operator leads to introducing a stochastic term and a memory term: the
price we have to pay for neglecting the Y degrees of freedom and still retaining
a satisfactory representation of the X dynamics on short and long time scales
is going from a deterministic representation in terms of ordinary differential
equations to an stochastic representation where integro-differential operators
are involved. In particular, the consideration of memory effects marks the dif-
ference between what is discussed in this contribution and the classic method
of averaging [5, 17], which assumes that there is a vast time-scale separation
between the two systems X and Y , so that memory effects are negligible. Our
approach, instead, relies on the presence of a relatively weak coupling between
the X and Y variables.

So far, we have been able to prove by direct calculation such a correspondence
between the Mori-Zwanzig and Ruelle approaches only up to second order. but it
is reasonable to conjecture that the same applies at any order n of perturbation.
If this is true, and taking the limit of n → ∞, one would get that the exact
Mori-Zwanzig projected dynamics provides the unique surrogate dynamics for
the X variables which is perfectly statistically compatible with the full (X,Y )
system for any observables of the X variables only. Therefore, extending the
proof we have given to all orders of perturbations would be extremely relevant.

The results presented in this paper have relevance also in the context of the
discussion on how to model practically and effectively high dimensional multi-
scale systems. In particular, we refer to the problem of a) comparing models
featuring different spatial resolutions; and b) constructing so-called parametriza-
tions for the unresolved sub-scale processes. It is clear, from the rather general
setting used here that increasing the resolution of a model amounts to enlarging
the set of fast variables Y (this is particularly evident if one consider Galerkin-
like expansions for the fields) coupled to the X slow variables, and devising
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parametrizations is nothing but approximating effectively the surrogated dy-
namics. This was partly discussed already in [36] in the context of considering
exclusively long-term statistical properties. What we have additionally learnt
in this paper is that the Mori-Zwanzig projected dynamics, which is instead
relevant for reproducing effectively the time evolution of the slow variables only,
provides the surrogate dynamics we need to have a convincing statistics for the
slow variables.

This has direct relevance for the modelling of geophysical fluid flows. It
seems to support the idea of assessing the quality of climate models by testing
their performance as tools for numerical weather prediction [28], and, more in
general, points towards the direction of the so-called seamless prediction [26],
which foresees the possibility of using the same models to perform forecasts over
very different time scales, ranging from days to years and more. While usually
the scholarly literature focuses on stochastic parametrizations as crucial tools
in this direction [25] , the present work underlines that the consideration of -
usually neglected - memory effects is as important for achieving this goal.

We wish to make a final remark on the main findings of this paper. The
right hand side of Eq. 18 contains, as discussed above, a stochastic term. There-
fore, the invariant measure of the dynamical system representing the surrogate
dynamics is absolutely continuous with respect to Lebesgue. As discussed in
[31, 32], [3], [19, 20], [22], this implies that the fluctuation-dissipation theorem
can be applied, relating response and fluctuations. Since the invariant measure
of the surrogate dynamics agrees, up to second order, with the projected mea-
sure of the X variables in the the full system and, as we have shown in this
work, also the dynamics agrees closely to that of the full system, the response
of the model should be close to that of the full system. The results therefore
suggest the applicability of the fluctuation-dissipation theorem to the projected
dynamics, as proposed using a different point of view in [7]. In particular, our
results address the concerns expressed in [22] on the applicability of the FDT
in the context of climate dynamics and support the relatively positive findings
obtained in this direction by [18] [14], [4] and [8].
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