15 research outputs found

    PATRIC, the bacterial bioinformatics database and analysis resource

    Get PDF
    The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issu

    The RAST Server: Rapid Annotations using Subsystems Technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them.</p> <p>Description</p> <p>We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment.</p> <p>The service normally makes the annotated genome available within 12–24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service.</p> <p>Conclusion</p> <p>By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.</p

    Characterization of the Staphylococcus aureus Heat Shock, Cold Shock, Stringent, and SOS Responses and Their Effects on Log-Phase mRNA Turnover

    No full text
    Despite its being a leading cause of nosocomal and community-acquired infections, surprisingly little is known about Staphylococcus aureus stress responses. In the current study, Affymetrix S. aureus GeneChips were used to define transcriptome changes in response to cold shock, heat shock, stringent, and SOS response-inducing conditions. Additionally, the RNA turnover properties of each response were measured. Each stress response induced distinct biological processes, subsets of virulence factors, and antibiotic determinants. The results were validated by real-time PCR and stress-mediated changes in antimicrobial agent susceptibility. Collectively, many S. aureus stress-responsive functions are conserved across bacteria, whereas others are unique to the organism. Sets of small stable RNA molecules with no open reading frames were also components of each response. Induction of the stringent, cold shock, and heat shock responses dramatically stabilized most mRNA species. Correlations between mRNA turnover properties and transcript titers suggest that S. aureus stress response-dependent alterations in transcript abundances can, in part, be attributed to alterations in RNA stability. This phenomenon was not observed within SOS-responsive cells

    SEED Servers: High-Performance Access to the SEED Genomes, Annotations, and Metabolic Models

    Get PDF
    <div><p>The remarkable advance in sequencing technology and the rising interest in medical and environmental microbiology, biotechnology, and synthetic biology resulted in a deluge of published microbial genomes. Yet, genome annotation, comparison, and modeling remain a major bottleneck to the translation of sequence information into biological knowledge, hence computational analysis tools are continuously being developed for rapid genome annotation and interpretation. Among the earliest, most comprehensive resources for prokaryotic genome analysis, the SEED project, initiated in 2003 as an integration of genomic data and analysis tools, now contains >5,000 complete genomes, a constantly updated set of curated annotations embodied in a large and growing collection of encoded subsystems, a derived set of protein families, and hundreds of genome-scale metabolic models. Until recently, however, maintaining current copies of the SEED code and data at remote locations has been a pressing issue. To allow high-performance remote access to the SEED database, we developed the SEED Servers (<a href="http://www.theseed.org/servers">http://www.theseed.org/servers</a>): four network-based servers intended to expose the data in the underlying relational database, support basic annotation services, offer programmatic access to the capabilities of the RAST annotation server, and provide access to a growing collection of metabolic models that support flux balance analysis. The SEED servers offer open access to regularly updated data, the ability to annotate prokaryotic genomes, the ability to create metabolic reconstructions and detailed models of metabolism, and access to hundreds of existing metabolic models. This work offers and supports a framework upon which other groups can build independent research efforts. Large integrations of genomic data represent one of the major intellectual resources driving research in biology, and programmatic access to the SEED data will provide significant utility to a broad collection of potential users.</p> </div

    Processing ids_to_sequences.

    No full text
    <p>(a) The ids_to_sequences function call accepts multiple IDs as an argument and uses the Sapling server to process the calls. These are returned as a single table. (b) A detailed description of each call (in this example, the ids_to_sequences) is provided online and is automatically generated from the entity-relationship models shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0048053#pone-0048053-g002" target="_blank">Figure 2</a>.</p

    Architecture of the SEED servers.

    No full text
    <p>The client packages (currently available for Perl or Java) handle the HTTP requests and responses, and parse the data from the appropriate lightweight data exchange formats to data structures. The four servers access the SEED data.</p
    corecore