22,267 research outputs found
Theoretical analysis of Wolter/LSM X-ray telescope systems
A ray tracing analysis has been performed for the spectral slicing zoom X-ray telescope for configurations in which a convex layered synthetic microstructure (LSM) optic is placed in front of the prime focus or a concave LSM optic is placed behind the prime focus. The analysis has considered the geometrical shape of the LSM optic to be either a hyperboloid, sphere, ellipsoid or constant optical path aspheric element for two configurations of the glancing incidence X-ray telescope: the ATM Experimental S-056 Wolter I system and the Stanford/MSFC Wolter-Schwarzchild nested system. For the different systems the RMS blur circle radii, the point spread function (PSF), the full width half maximum (FWHM) of the PSF have been evaluated as a function of field angle and magnification of the secondary to determine resolution of the system. The effects of decentration and tilt of the selected LSM element on the performance of the system have been studied to determine mounting and alignment tolerances
Theoretical design and analysis of the layered synthetic microstructure optic for the dual path X-ray telescope
A ray tracing analysis was performed for several configurations for the inner channel of the dual path X-ray telescope, which is proposed to use the second mirror of the Stanford/MSFC Wolter-Schwarzchild telescope and a normal incident layered synthetic microstructure (LSM) mirror to form a secondary image near the front of the telescope. The LSM mirror shapes considered were spherical, ellipsoid, hyperboloid, and constant optical path length (OPL) aspheric. Only the constant OPL case gave good axial resolution. All cases had poor off axis resolution as judged by the RMS blur circle radius
Theoretical analysis of segmented Wolter/LSM X-ray telescope systems
The Segmented Wolter I/LSM X-ray Telescope, which consists of a Wolter I Telescope with a tilted, off-axis convex spherical Layered Synthetic Microstructure (LSM) optics placed near the primary focus to accommodate multiple off-axis detectors, has been analyzed. The Skylab ATM Experiment S056 Wolter I telescope and the Stanford/MSFC nested Wolter-Schwarzschild x-ray telescope have been considered as the primary optics. A ray trace analysis has been performed to calculate the RMS blur circle radius, point spread function (PSF), the meridional and sagittal line functions (LST), and the full width half maximum (PWHM) of the PSF to study the spatial resolution of the system. The effects on resolution of defocussing the image plane, tilting and decentrating of the multilayer (LSM) optics have also been investigated to give the mounting and alignment tolerances of the LSM optic. Comparison has been made between the performance of the segmented Wolter/LSM optical system and that of the Spectral Slicing X-ray Telescope (SSXRT) systems
Velocity profiles in strongly turbulent Taylor-Couette flow
We derive the velocity profiles in strongly turbulent Taylor-Couette flow for
the general case of independently rotating cylinders. The theory is based on
the Navier-Stokes equations in the appropriate (cylinder) geometry. In
particular, we derive the axial and the angular velocity profiles as functions
of distance from the cylinder walls and find that both follow a logarithmic
profile, with downwards-bending curvature corrections, which are more
pronounced for the angular velocity profile as compared to the axial velocity
profile, and which strongly increase with decreasing ratio between inner
and outer cylinder radius. In contrast, the azimuthal velocity does not follow
a log-law. We then compare the angular and azimuthal velocity profiles with the
recently measured profiles in the ultimate state of (very) large Taylor
numbers. Though the {\em qualitative} trends are the same -- down-bending for
large wall distances and (properly shifted and non-dimensionalized) angular
velocity profile being closer to a log-law than (properly shifted
and non-dimensionalized) azimuthal velocity profile -- {\em
quantitative} deviations are found for large wall distances. We attribute these
differences to the Taylor rolls and the height dependence of the profiles,
neither of which are considered in the theoretical approach
StochKit-FF: Efficient Systems Biology on Multicore Architectures
The stochastic modelling of biological systems is an informative, and in some
cases, very adequate technique, which may however result in being more
expensive than other modelling approaches, such as differential equations. We
present StochKit-FF, a parallel version of StochKit, a reference toolkit for
stochastic simulations. StochKit-FF is based on the FastFlow programming
toolkit for multicores and exploits the novel concept of selective memory. We
experiment StochKit-FF on a model of HIV infection dynamics, with the aim of
extracting information from efficiently run experiments, here in terms of
average and variance and, on a longer term, of more structured data.Comment: 14 pages + cover pag
Measurements of Grain Motion in a Dense, Three-Dimensional Granular Fluid
We have used an NMR technique to measure the short-time, three-dimensional
displacement of grains in a system of mustard seeds vibrated vertically at 15g.
The technique averages over a time interval in which the grains move
ballistically, giving a direct measurement of the granular temperature profile.
The dense, lower portion of the sample is well described by a recent
hydrodynamic theory for inelastic hard spheres. Near the free upper surface the
mean free path is longer than the particle diameter and the hydrodynamic
description fails.Comment: 4 pages, 4 figure
b --> s g g decay in the two and three Higgs doublet models with CP violating effects
We study the decay width and CP-asymmetry of the inclusive process b--> s g g
(g denotes gluon) in the three and two Higgs doublet models with complex Yukawa
couplings. We analyse the dependencies of the differential decay width and
CP-asymmetry to the s- quark energy E_s and CP violating parameter \theta. We
observe that there exist a considerable enhancement in the decay width and CP
asymmetry is at the order of 10^{-2}. Further, it is possible to predict the
sign of C_7^{eff} using the CP asymmetry.Comment: 15 pages, 7 Figures (required epsf style
Nonclassical photon pairs generated from a room-temperature atomic ensemble
We report experimental generation of non-classically correlated photon pairs
from collective emission in a room-temperature atomic vapor cell. The
nonclassical feature of the emission is demonstrated by observing a violation
of the Cauchy-Schwarz inequality. Each pair of correlated photons are separated
by a controllable time delay up to 2 microseconds. This experiment demonstrates
an important step towards the realization of the Duan-Lukin-Cirac-Zoller scheme
for scalable long-distance quantum communication.Comment: 4 pages, 2 figure
First measurements of the flux integral with the NIST-4 watt balance
In early 2014, construction of a new watt balance, named NIST-4, has started
at the National Institute of Standards and Technology (NIST). In a watt
balance, the gravitational force of an unknown mass is compensated by an
electromagnetic force produced by a coil in a magnet system. The
electromagnetic force depends on the current in the coil and the magnetic flux
integral. Most watt balances feature an additional calibration mode, referred
to as velocity mode, which allows one to measure the magnetic flux integral to
high precision. In this article we describe first measurements of the flux
integral in the new watt balance. We introduce measurement and data analysis
techniques to assess the quality of the measurements and the adverse effects of
vibrations on the instrument.Comment: 7 pages, 8 figures, accepted for publication in IEEE Trans. Instrum.
Meas. This Journal can be found online at
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=1
- …