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We derive the velocity profiles in strongly turbulent Taylor-Couette flow for the
general case of independently rotating cylinders. The theory is based on the Navier-
Stokes equations in the appropriate (cylinder) geometry. In particular, we derive the
axial and the angular velocity profiles as functions of distance from the cylinder walls
and find that both follow a logarithmic profile, with downwards-bending curvature
corrections, which are more pronounced for the angular velocity profile as compared
to the axial velocity profile, and which strongly increase with decreasing ratio η

between inner and outer cylinder radius. In contrast, the azimuthal velocity does not
follow a log-law. We then compare the angular and azimuthal velocity profiles with the
recently measured profiles in the ultimate state of (very) large Taylor numbers. Though
the qualitative trends are the same – down-bending for large wall distances and
the (properly shifted and non-dimensionalized) angular velocity profile ω+(r) being
closer to a log-law than the (properly shifted and non-dimensionalized) azimuthal
velocity profile u+

ϕ (r ) – quantitative deviations are found for large wall distances. We
attribute these differences to the nonlinear dependence of the turbulent ω-diffusivity
on the wall distance and partly also to the Taylor rolls and the axial dependence of the
profiles, neither of which are considered in the theoretical approach. Assuming that
the first origin is the most relevant one, we calculate from the experimental profile
data how the turbulent ω-diffusivity depends on the wall distance and find a linear
behavior for small wall distances as assumed and a saturation behavior for very large
distances, reflecting the finite gap width: But in between the ω-diffusivity increases
stronger than linearly, reflecting that more eddies can contribute to the turbulent
transport (or they contribute more efficiently) as compared to the plane wall case.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865818]

I. INTRODUCTION

Having measured, analyzed, and discussed the global properties of the Rayleigh-Bénard (RB)
(cf. Refs. 1, 2) and of the Taylor-Couette (TC)3–5 devices, the two paradigmatic systems of fluid
mechanics, which realize strongly turbulent laboratory flow, there is increasing interest in the local
properties of these flows, e.g., in their flow and temperature profiles. In the ultimate state of RB
thermal convection6–9 logarithmic temperature profiles have been measured10 and calculated from
the Navier-Stokes-equations.11

In Taylor-Couette flow between independently rotating cylinders (see the sketch in Fig. 1 for
the geometry and the definitions of the geometric quantities) one can get considerably deeper into
the ultimate range, in which the boundary layers are turbulent (see caption of Figure 1), than in RB
flow, cf. Ref. 5, due to the better efficiency of mechanical as compared to thermal driving. In this
ultimate TC flow regime, i.e., for very large Taylor numbers Ta � 5 × 108 (to be precisely defined
later in Eq. (12)), the profiles of the azimuthal velocity have recently been measured12 within the
Twente Turbulent Taylor-Couette (T3C) facility.13 In Figure 2(a) we reproduce the time-averaged
azimuthal and angular velocity profiles near the inner cylinder for two large Ta numbers. In this
figure and later in Eq. (1) the azimuthal velocity and the distance ρ from the wall are presented in

1070-6631/2014/26(2)/025114/20/$30.00 C©2014 AIP Publishing LLC26, 025114-1
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outer

inner

FIG. 1. Sketch for Taylor-Couette flow and the notations used in the present work. The inner and outer cylinder radii are ri

and ro, respectively, their respective angular velocities are ωi and ωo. The gap width is d = ro − ri. Distances from the origin
are called r, and ρ = r − ri for the inner boundary layer and ρ = ro − r for the outer boundary layer are the distances to
the respective walls. The mean azimuthal velocity field is Uϕ (r) = r�(r), where �(r) is the angular velocity. The mean axial
velocity field is Uz(r), which besides on r will also depend on the axial position z. The dashed rolls indicate the Taylor role
remnants (with axial and radial velocity components), which are the largest eddies of the turbulent TC flow, and the origin of
the axial dependence, which will however be disregarded in our theoretical treatment. The inner and outer Reynolds numbers
of the system are Rei = riωid/ν and Reo = roωod/ν, respectively, where ν is the kinematic viscosity of the fluid between the
cylinders. For fixed outer cylinder ωo = 0, an increase of Rei first leads to the Rayleigh instability and the Taylor rolls, then
on further increase towards a turbulent bulk and still mainly laminar boundary layers at the cylinder walls, and finally to fully
developed turbulence throughout, the so-called ultimate regime, in which both boundary layers and bulk are turbulent. The
velocity boundary layer profiles in this ultimate regime are the focus of the present paper.

FIG. 2. (a) log-linear plot of the inner cylinder azimuthal velocity profiles near the inner cylinder in so-called wall units
u+(ρ+) (see text) for two Taylor numbers Ta = 6.2 × 1012 and Ta = 3.8 × 1011 as measured in Ref. 12, for fixed axial
coordinate. In these units the profiles for various Ta collapse for small wall distances ρ+ in the viscous sublayer. To calculate
the derivatives shown in (b) the data of Ref. 12 (or of (a)) have been fitted with a 5th order polynomial for smoothening. Also
shown as a straight dashed line is the von Kármán log-law κ−1ln ρ+ + B, with the von Kármán constant κ = 0.4 and the offset
B = 5.2.12 In addition, we show the two angular velocity profiles ω+(ρ+) resulting from the azimuthal velocity profiles, which
obviously nearly overlap with u+(ρ+) for small wall distances ρ+, but for larger ρ+ closer to the center range of the gap bend
down less strongly than the respective azimuthal velocities. The data all extend to midgap d+/2. (b) The compensated slopes
ρ+du+/dρ+ and ρ+dω+/dρ+ of the azimuthal and angular velocity profiles, respectively, vs log10ρ

+ for the same curves as in
Figure 2(a).
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the usual wall units u∗
i and δ∗

i = ν/u∗
i , marked with the usual superscript + and with the subscript i

for the inner cylinder and to be precisely defined later. Correspondingly, the subscript o stands for
the outer cylinder. In Ref. 12 it was argued that the flow profiles roughly follow the von Kármán
law14 for wall distances ρ much larger than in the viscous sublayer and much smaller than half of
the gap, whose width is d = ro − ri. Indeed, as seen from Figure 2(a), for the Ta = 6.2 × 1012 case
and for log10ρ

+ ≈ 2.5 – two orders of magnitude smaller than the outer length scale which is the
half width d/2 of the gap – the azimuthal velocity profile Uϕ(r) after proper shifting seems to be
possibly consistent with a log-law,

u+(ρ+) ≡ ωi · ri

u∗
i

− Uϕ(r )

u∗
i

≈ κ−1 ln ρ+ + B, (1)

over a small range, but for larger wall distances ρ+ the curve bends down towards smaller values.
This behavior is pronouncedly different from the standard pipe flow case,14–18 for which the profiles
first bend up before they bend down towards the center of the flow. In Figure 2(a) we also show
the angular velocity profiles ω+(ρ+) in the respective wall unit, resulting from the mean angular
velocity �(r) = Uϕ(r)/r. Both the azimuthal velocity profile u+(ρ+) as well as the angular velocity
profile ω+(ρ+) are shifted so that they are zero at the inner cylinder and then have positive slopes.
Also ω+(ρ+) is normalized with wall units, i.e.,

ω+(ρ+) ≡ ωi − �(ρ+)

ω∗
i

=
ωi ri − ri

ri +ρ
uϕ

u∗
i

= 1

1 + ρ

ri

u+
ϕ (ρ+) + ωi ri

u∗
i

ρ

ri

1 + ρ

ri

, (2)

with ω∗
i = u∗

i /ri . In the regime of the log-law ω+(ρ+) is nearly indistinguishable from the azimuthal
velocity itself (see Figure 2), since ρ/ri � 1, but note that obviously not both u+(ρ+) and ω+(ρ+)
can follow a log-law, due to the extra ρ-dependent factor in between them and the extra additive
term. It is the last term in Eq. (2) which brings the ω+ profile above the u+ profile with increasing
ρ/ri, because ωi ri/u∗

i will turn out to be significantly larger than one, e.g., it varies from 40 to 54
for Ta from 6 × 1010 to 6 × 1012.

One can calculate the difference between ω+ and u+ by adding and subtracting properly in the
first term of Eq. (2) and finds

ω+(ρ+) − u+(ρ+) = Uϕ

u∗
i

ρ

ri

1 + ρ

ri

. (3)

The first factor will turn out to be (see Table II, for Ta = 6 × 1012) between 54 near the wall and
about 21.6 at midgap (see Figure 2 in Huisman et al.12); the second factor varies between 0 at the
cylinder and (1 − η)/(1 + η), thus 0.166 for T3C,13 at midgap. For the difference (3) this gives an
increase between 0 and about 3.6, which can be observed in Figure 2 (and also in Figure 3) and
explains the increasing separation between ω+(ρ+) and u+(ρ+). Note that ω+(ρ+) is much nearer
to the log-law than u+(ρ+) is.

The best way to test how well data follow a particular law is to introduce compensated plots,
as has also been done for structure functions19 and for RB global scaling laws such as Nu or Re
vs Rayleigh number Ra. Here, to test how well the data follow Eq. (1), rather than plotting u+

vs log10ρ
+ as done in Fig. 2(a), we plot the compensated slope ρ+du+/dρ+ = du+/d ln ρ+ of the

profile, see Fig. 2(b). If an exact log-law would hold, this should be a constant horizontal line. From
the figure we see that this does not hold, neither for the azimuthal velocity u+, nor for the angular
velocity ω+. There is only a broader maximum between log 10ρ

+ ≈ 2.0 and 2.3 (depending on Ta),
i.e., at a scale roughly two orders of magnitude larger than the inner length scale and two orders of
magnitude smaller than the outer length scale.

Clearly, these data ask for a theoretical interpretation and explanation from the Navier-
Stokes equations. For strongly driven RB flow such an explanation for the corresponding tem-
perature profiles, which also show a logarithmic profile,10 has already been offered previously in
Ref. 11. In the present paper we shall derive the velocity profiles for strongly driven TC flow
from the Navier-Stokes equations in the very same spirit and discuss their physics and features.
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FIG. 3. The universal (i.e., Ta-independent) angular velocity profile ω+(x) (Eq. (42)) and the universal azimuthal velocity
profile u+(x) (Eq. (43)) for the inner cylinder boundary layer as they follow from the present theory on (a) a log-linear scale
and (b) a linear-linear scale, in comparison with the experimental data from Ref. 12 for Ta = 6.2 × 1012. Note that the
representation of Figure 2(b) does not lead to universal curves. (c) Zoom-in of (a). In (d) the corresponding compensated
plots xdu+/dx and xdω+/dx are given. Note that xdω+/dx = dω+/d(lnx).

In particular, we will check whether the experimentally observed down-bending of the azimuthal
velocity profiles (and also of the angular velocity profiles) can be understood as a curvature ef-
fect, caused by the curvature of the wall, i.e., of the inner cylinder. We will find that the pro-
files following from our theoretical approach indeed bend down, but weaker than experimentally
found. Therefore, the strong down-bending experimentally found in Ref. 12 must have additional
reasons.

We start Sec. II by summarizing the Navier-Stokes based approach for the derivation of the
profiles in cylinder coordinates. In Sec. III we then will derive and study the profile of the axial
component uz versus wall distance ρ = r − ri or ρ = ro − r. Here ri, o are the inner and outer
cylinder radii, respectively. We analyze the axial component first, since we consider this – together
with ur – as the representative of the so-called “wind,” responsible for the transport of the angular
velocity ω = uϕ /r, whose difference ωi − ωo between the inner and outer cylinders drives the Taylor-
Couette turbulence. Unfortunately, experimental data for the wind profile are not yet available, in
contrast to the above mentioned measurements of the azimuthal component.12 Next, in Sec. IV, the
mean azimuthal velocity profile Uϕ(ρ) or rather the mean angular velocity profile �(ρ) = Uϕ(ρ)/r
versus ρ is derived from the respective Navier-Stokes equation. Analogously to the temperature
field in RB flow here in TC the angular velocity field ω is transported by the wind and by its
fluctuations u∗

i at the inner or u∗
o at the outer cylinder, originating from the respective (kinetic)

wall stress tensor element 
rz. In Sec. V we extend the comparison with the experimental data
of Ref. 12 and in particular calculate the distance dependence of the turbulent ω-diffusivity from
the experimental data and physically interpret it, and then close the paper with concluding remarks
in Sec. VI.
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II. THEORETICAL BASIS

By detailed comparison of TC with RB flow we identify in this section the relevant quantities
to calculate (and useful to measure). The theory has, of course, to be based on the Navier-Stokes
equations for the three velocity components and the (kinetic) pressure field p (equal to the physical
pressure divided by the fixed density ρfluid of the fluid). We repeat them here in the appropriate
(cylinder) coordinates for the readers’ convenience (cf. Ref. 20):

∂t uϕ + (�u · �∇)uϕ + ur uϕ

r
= −1

r
∂ϕ p + ν

(
�uϕ − uϕ

r2
+ 2

r2
∂ϕur

)
, (4)

∂t uz + (�u · �∇)uz = −∂z p + ν�uz, (5)

∂t ur + (�u · �∇)ur − u2
ϕ

r
= −∂r p + ν(�ur − uϕ

r2
− 2

r2
∂ϕuϕ). (6)

In addition, incompressibility is assumed. As usual the velocity fields are decomposed into their
long-time means and their fluctuations, whose correlations give rise to the Reynolds stresses, which
will be modeled appropriately. We shall apply the well known mixing length ansatz14, 20 and intro-
duce turbulent viscosity and turbulent angular-momentum-diffusivity. All this then will lead to the
respective profile equations.

There are two basic differences between RB and TC flow. First, in contrast to RB, which
is thermally driven by a temperature difference � = Tb − Tt between the bottom and top plate
temperatures Tb, t, leading to a vertical temperature and a horizontal velocity (wind) profile, in TC
flow there is a velocity (vector) field �u(�x, t) only. This is driven by a torque input due to different
rotation frequencies ωi and ωo of the inner and outer cylinders. Second, TC-flow can be compared
to non-Oberbeck-Boussinesq-(NOB)-flow (the more “NOBness,” the smaller η = ri/ro), because its
inner and outer boundary layers (BLs) have different profile slopes and thus BL-widths, as shown
in Ref. 21 (which we henceforth cite as EGL). It is

r3
i · ∂ω

∂r

∣∣∣
i
= r3

o · ∂ω

∂r

∣∣∣
o
. (7)

To take care of the different BL thicknesses we consider the inner and outer BLs separately. This
does not require different physical parameters as for NOB effects in RB, for which the NOBness
originates from the temperature dependence of the fluid properties, e.g., the kinematic viscosity.
In TC the kinematic viscosity ν is the same in both BLs; it is the boundary conditions which are
different in TC, in particular the different wall curvatures at the inner and outer cylinders, leading to
different profile slopes.

The three velocity components in TC flow (instead of the velocity and temperature fields in RB
flow) are subdivided into (a) the two components ur and uz, known as the perpendicular components,
and (b) the longitudinal component uϕ or angular velocity ω = uϕ /r. The former ones correspond
to the convection or transport flow, the so-called “wind” field, the latter one to the thermal field
in RB. This interpretation is based on the expression for the angular velocity current Jω and the
corresponding TC-Nusselt number Nω, which in TC play the role of the thermal current J and Nusselt
number Nu in RB flow. In EGL21 we have shown that

Jω = r3 [〈urω〉A,t − ν∂r 〈ω〉A,t
]

(8)

is r-independent and defines the (dimensionless) angular velocity current

Nω = Jω/Jω
lam . (9)

Here Jω
lam denotes the analytically known angular velocity current in the laminar and purely azimuthal

flow state of small Taylor number TC flow, see EGL,21 Eq. (3.11). The non-dimensional torque is

G = ν−2 Jω = ν−2 Jω
lam Nω, (10)
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which is related to the physical torque T by T = 2π�ρfluidν
2G = 2π�ρfluidJω. The relation to the

(r, ϕ)-component of the stress tensor is (e.g., at the inner cylinder)

�rϕ(ri ) ≡ ρ f luid
rϕ(ri ) = −ρ f luidνri

(
∂ω

∂r

)
ri

= ρ f luidr−2
i Jω. (11)

(For all this we refer to EGL.21) As TC flow is considered to be incompressible, we can always use
the kinematic quantities and equations, i.e., after dividing by ρfluid, which then plays no explicit role
anymore. In particular, we henceforth always use the kinetic stress tensor 
ij.

The global transport properties depend on ωi and ωo. In non-dimensional form this dependence
can be expressed through the rotation ratio μ ≡ ωo/ωi and the Taylor number, which we define
as

T a = r4
a

r4
g

d2r2
a (ωi − ωo)2

ν2
. (12)

Here ra = (ri + ro)/2 is the arithmetic mean of the two cylinder radii and rg = √
riro their geometric

mean; d = ro − ri is the gap width between the cylinders. In case of resting outer cylinder we in
particular have

T a = r6
a

r4
gr2

i

Re2
i =

(
1+η

2

)6

η4
Re2

i . (13)

The inner cylinder Reynolds number is given by Rei = riωid/ν. Here η is the radius ratio η ≡ ri/ro ∈
(0, 1) as usual. With respect to the coordinates we note the following correspondence between those
for the top and bottom plates in RB samples as compared to the curved TC cylinder coordinates:
It corresponds x in RB ↔ z in TC, stream wise (wind) direction; z in RB ↔ r in TC, wall normal
direction; and y in RB ↔ ϕ in TC, lateral direction.

While the angular velocity ω = uϕ /r in TC corresponds to the temperature field in RB, as
already explained by EGL,21 the transport flow or convection field, known as the wind, is described
by the components ur and uz. The Taylor roles (or their remnants in the turbulent state as observed in
Ref. 4) correspond to the RB-rolls.22 The wind ux(z) in RB has a profile as a function of height z,
while the component uz in TC has a profile as a function of r or rather of ρ = r − ri for the inner or
ρ = ro − r for the outer cylinder, which measure the wall normal distances. The up and down flow
along the side walls of RB has its analogue in the ur component of TC flow. In contrast to the mainly
studied aspect ratio � = 1 samples (or � of order 1) in RB, in TC we usually have larger � (order 10
or more). Thus there are more than only one Taylor role remnants in TC. We shall have in mind one of
those as representative. With all these identifications we shall decompose the flow field components
into their long(er)-time means and their fluctuations as follows: uϕ = Uϕ(r ) + u′

ϕ = r�(r ) + u′
ϕ ,

uz = Uz(r ) + u′
z , and ur = u′

r , where the fluctuations u′ still depend on the full coordinates �x and t.
There is a mean angular velocity flow profile �(r) and also a mean axial flow profile Uz(r) at least
within each roll remnant.

III. THE WIND PROFILE

Using the correspondences just described we have to study the axial component’s time-mean
Uz as a function of inner cylinder wall distance ρ = r − ri (or ρ = ro − r for the outer one) in
order to derive and understand the profile of the wind field near the inner (or outer) cylinder. Time
averaging the z-equation (5) we have ∂t =̂ 0, ∂ϕ =̂ 0, and in the assumed approximation no axial
dependence ∂z =̂ 0. There also is no axial pressure drop, i.e., ∂zp = 0. These are only approximately
valid assumptions, of course. In experiment there is a z-dependence of the axial component due to
the remnants of the Taylor roles as well as due to the end effects of the TC-container, which also
lead to an axially felt pressure, which we neglect. These approximations are thus valid in a certain
z-range in a roll remnant, similarly as there is only approximately no x-independence of the wind in
the Rayleigh-Bénard system.
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With all this the viscous term of (5) is ν 1
r ∂r r∂rUz(r ). The nonlinear terms (with the con-

tinuity equation) can be rewritten as (�u · �∇)uz

t
= �∇ · �uuz

t
= 1

r ∂r (ru′
r u′

z
t
). Putting both contri-

butions together, the Navier-Stokes equation for the wind profile reduces to 1
r ∂r [...] = 0 or

[...] ≡ ru′
r u′

z
t − νr∂rUz = constant. As there are no Reynolds stress contributions at the cylinder

walls, we find

νro∂rUz(ro) = νri∂rUz(ri ) ≡ ri (u
∗
z,i )

2 = ro(u∗
z,o)2, (14)

which defines the wind fluctuation scales26 u∗
(z,i),(z,o) in terms of the inner and outer cylinder kinetic

wall stress tensor component 
rz(ri, o) ≡ ν∂rUz(ri, o) (cf. Ref. 20, Sec. 16). Note that from Eq. (14)
it follows that the wind fluctuation amplitudes are different at the two cylinders: u∗

z,o/u∗
z,i = √

ri/ro

= √
η �= 1 in the TC system. Depending on the radius ratio η the wind fluctuation amplitude is thus

somewhat weaker in the outer cylinder boundary layer (BL) than in the inner one. One may interpret
this as more space being available.

While the velocity fluctuation amplitudes u∗
(z,i),(z,o) are defined in terms of the rz-wall stress,

independent of the Reynolds stress, this latter one acts in the interior of the flow. Thus for determining
the wind profile an ansatz is needed for it. The Reynolds stress is, of course, responsible for the
turbulent viscosity in the convective transport. We assume that the mixing length idea can be used
for TC flow, too, and write

u′
zu

′
r = −νturb(r )∂rUz . (15)

We furthermore assume for the time being the validity of the mixing length modeling for the turbulent
viscosity ν turb(r), considering it as depending on the wall distance as the characteristic length scale
and the velocity fluctuation amplitude as the characteristic velocity scale,

νturb(r ) = K T
i (r − ri )u

∗
z,i and = K T

o (ro − r )u∗
z,o, (16)

respectively. Here K T
i,o are non-dimensional constants, denoted as transversal von Kármán constants,

possibly different for the inner and outer cylinders.
Let us now, for simplicity, concentrate on the inner cylinder; the respective outer cylinder

formulas are straightforward then. With the said ansatz the wind profile is determined by the
equation (ν + νturb(r )) · r∂rUz = ri · (u∗

z,i )
2 or

r∂rUz(r ) = ri · (u∗
z,i )

2

ν + K T
i · (r − ri ) · u∗

z,i

. (17)

Here as the relevant length scale we assume – as usual – the distance ρ = r − ri ≥ 0 from the
cylinder wall, i.e., r = ri + ρ. This should hold at least in the immediate vicinity of the cylinder
walls, when the curvature is not yet relevant. In case of the outer cylinder we have instead r = ro −
ρ or ρ = ro − r. To distinguish both cases we introduce σ i, o, where σ i = 1 and σ o = −1 and thus
have r = ri, o + σ i, oρ. The sign-function σ i, o distinguishes the positive or negative curvature at the
inner, concave cylinder wall and the outer, convex cylinder wall. ρ is always positive and increases
with growing distance from the walls, both of the inner as well as of the outer cylinder. Defining the
characteristic viscous wall distance(s)

δ∗
(z,i),(z,o) ≡ ν

u∗
(z,i),(z,o)

(18)

at which ν turb(r) is of the order of the molecular viscosity ν, we can introduce wall units as usual,

ρ+
(z,i),(z,o) ≡ ρ/δ∗

(z,i),(z,o) and U+
(z,i),(z,o) ≡ Uz(ρ)/u∗

(z,i),(z,o). (19)

Then the profile slope equation(s) for the wind in axial direction near the cylinder wall(s) as a
function of the respective wall distance in wall units reads

dU+

dρ+ = 1

(1 + σi,oρ+/r+
i,o)(1 + K T

i,oρ
+)

. (20)
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The first factor in the denominator is the factor r from the lhs of Eq. (17), r+
i,o denotes the inner

(or outer) cylinder radius in the respective wall units, and σ i, σ o are the signs of the respective
curvatures, concave or convex. Usually, the characteristic wall distance is rather small, ρ+/r+

i,o � 1,
of course unless the respective cylinder is very thin as, e.g., for η ≈ 0.

Let us now draw conclusions:

(i) For sufficiently small distances ρ+ � 1 and ρ+ � r+
i,o we find the viscous, linear sublayer as

usual,

U+ = ρ+ = ρ/δ∗
z . (21)

If it were possible to measure the slopes of the viscous, linear sublayers, one would be able
to immediately determine the viscous length scales and therefore also the velocity fluctuation
scales u∗

(z,i),(z,o) = ν/δ∗
(z,i),(z,o).

(ii) In general, we can decompose the fraction in Eq. (20) into partial fractions and find the profile
as a sum of two log-terms,

U+(ρ+) = 1

K T
· ln(1 + K T ρ+) − ln(1 + σi,oρ

+/r+
i,o)

1 − σi,o/(r+
i,o K T )

. (22)

Also here KT means K T
i,o. This solution for the wind profile satisfies the boundary condition at

the cylinder wall U+(0) = 0 and also reproduces the linear viscous sublayer law U+ = ρ+ for
small ρ+. – The case r+

i,o = 1/K T
i,o deserves special care, see (iii).

(iii) If one of the relations either for the inner or for the outer cylinder is valid, r+
i,o = 1/K T

i,o or
ri,o = δ∗

i,o/K T
i,o = ν/(u∗

(z,i),(z,o) K
T
i,o), i.e., for tiny inner or outer cylinder radius ri, o, the profile

slope is dU+/dρ+ = 1/(1 + KTρ+)2]. Therefore U+(ρ+) = ρ+/(1 + KTρ+) and for large ρ+

� 1 there is no log-profile in this special case but instead U(ρ+) is ρ+-independent. This case
is obviously more a mathematical pecularity, rather than being physically relevant.

(iv) The main difference between the wind profile in curved TC flow and that of plane plate flow
(e.g., in RB) is the factor of r in the profile equation (17) or (1 + σi,oρ

+/r+
i,o) in the profile

equation (20). Now, r = ri + ρ varies between ri and ri + d/2; beyond, for even larger ρ, one
is in the outer part of the gap. Therefore the relative deviation of r from ri is at most d/(2ri) or
0.5(η−1 − 1). If this is less than the experimental precision of say 20%; 10%; 5%, the curvature
is unobservable. This happens for all radius ratios η less than some characteristic, precision
dependent value ηe > 0.714; 0.833; 0.909. The smaller the observable relative deviation is, the
larger the characteristic ηe or the smaller the characteristic gap width must be. For η > ηe up to
≈ 1 the experimental uncertainty hides the curvature effects in the wind profile. This estimate
must even be sharpened for the observation of deviations from the log-layer, since this does not
extend until gap half width, thus increasing the requirements for experimental identification of
the curvature effects in the log-layer range.

(v) In general, r+
i,o will be large since ri,o � δ∗

(z,i),(z,o). We shall confirm this below with an estimate
of u∗

(z,i),(z,o). Then the implication of the finite curvature radii r+
i,o of the cylinder walls can be

discussed as follows: For the inner cylinder the factor 1 + ρ+/r+
i in the denominator of the

profile equation (20) varies between 1 and 1 + d+/(2r+
i ) = (1 + η−1)/2. (Analogously for the

outer cylinder 1 − d+/(2r+
o ) = 1 − d/(2ro) = (1 + η)/2). For the Twente T3C facility with its

radius ratio η = 0.7158 the factor 1 + ρ+/r+
i for the inner BL varies between 1 and 1.199 ≈

1.20. For the outer cylinder the corresponding slope modification factor is 1.14. As expected
the curvature effects are always smaller at the outer than at the inner cylinder. The profile
equation thus describes a log-layer slope modified by a slightly decreasing (or an increasingly
smaller) slope.

The slope decrease will be the stronger the smaller the radius ratio η is. In order to have
d/(2ri) = 1 (or even 5) one needs to consider η = 1/3 = 0.333 (or even η = 1/11 = 0.091). The
smaller η, the better the curvature effects at the inner cylinder are visible. In contrast, for η → 1,
plane channel flow, there is no slope decrease anymore; there is then the pure log-law of the wall for
the wind profile, as long as the linear ansatz for the turbulent viscosity is a valid approximation.
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TABLE I. Values for the wind fluctuation amplitude u∗
z,i for some Taylor numbers, the corresponding Rei = 0.8115

√
T a,

also the respective viscous length scales and the inner cylinder radii and the gap half widths in wall units. For details see text.
Note that d+/(2r+

i ) = d/(2ri ) = 0.1985. The values for u∗
z,i /Ui have been calculated with Eq. (23), cf. Ref. 23.

Ta Rei
u∗

z,i
Ui

u∗
z,i (ms−1) δ∗

z,i = ν
u∗

z,i

ri
δ∗

z,i

d/2
δ∗

z,i

d/100
δ∗

z,i

6 × 1010 2.0 × 105 0.03645 0.09181 10.9 × 10−6 m 18350 3642 73
4.6 × 1011 5.5 × 105 0.03360 0.23275 4.30 × 10−6 m 46510 9233 185

3 × 1012 1.4 × 106 0.03133 0.55242 1.81 × 10−6 m 110500 21930 439
6 × 1012 2.0 × 106 0.03054 0.76927 1.30 × 10−6 m 153850 30540 611

We close this section on the wind profile by estimating the fluctuation amplitude(s) u∗
(z,i),(z,o)

and thus the viscous scales. To be specific we again consider the T3C facility.13 Its working fluid is
water with ν = 10−6 m2s−1. Its geometric parameters are ri = 0.2000 m, ro = 0.2794 m, d = ro − ri

= 0.0794 m, its radius ratio is η ≈ 0.7158. In order to estimate the size of the fluctuation amplitude

u∗
z,i we write this as u∗

z,i = u∗
z,i

Ui
· Rei · ν

d with the inner cylinder velocity Ui and the corresponding

Reynolds number Rei = Ui d
ν

. The outer cylinder be at rest, i.e., Rei characterizes the flow stirring.
Now we have to estimate the ratio u∗

z,i/Ui for various Ta or Rei, respectively. In Ref. 23 we
have derived an explicit expression for u∗

z /U as function of Re (and have applied it to RB flow in
Refs. 11 and 23). In lack of any measurements for u∗

z /Ui for the wind fluctuation scale in TC flow,
we have to build on those RB estimates. Since the fluctuation velocity u∗

z is determined by the wall
stress, only the immediate neighborhood of the cylinders is felt by the flow field, i.e., we might
neglect the curvature and calculate u* as for plane flow. According to Ref. 23 the relative fluctuation
strength then is given by

u∗
z

U
= κ̄

W ( κ̄
b Re)

with b ≡ e−κ̄ B . (23)

B is the logarithmic intercept of the common log-law of the wall u+ = 1
κ̄

lnz+ + B. We use κ̄ = 0.4
and B = 5.2 (cf. Refs. 14 and 20) which implies b = e−κ̄ B = 0.125. The argument of Lambert’s
function W then is 3.2 × Re. Depending on the values of the constants κ̄ and b, which are taken here
from pipe flow, channel flow, or flow along plates but have not yet been measured for TC flow, the
fluctuation amplitudes u∗

z,i/Ui at the inner (or outer) cylinder wall might differ slightly.
Our results are compiled in Table I for various Ta and the respective Rei in the first two columns.

Since in the present case of resting outer cylinder the relation between Ta and Rei is given by
Eq. (13), for the T3C facility with above η we in particular have T a = 1.5186Re2

i . Column 3 offers
u∗

z,i/Ui . This allows us to determine the corresponding u∗
z,i shown in column 4. From that we obtain

the respective viscous length scales δ∗
z,i = ν/u∗

z,i (see column 5). Knowing all this we can determine
also r+

i = ri/δ
∗
z,i and d+/2 and d+/100 (the wall distance where experimentally an approximate

log-law for the azimuthal velocity uϕ(ρ) had been found in Ref. 12, see Sec. IV), all compiled in
columns 6, 7, and 8 of Table I.

A final remark concerning the relevant Reynolds number Re for calculating u∗
z,i . One might

argue that instead of the inner cylinder Reynolds number Rei one better should use the so-called
wind Reynolds number Rew, introduced in Ref. 5, p. 130. For resting outer cylinder, i.e., for
μ = ωo/ωi = 0, this is Rew = 0.0424 · T a0.495 for the T3C-geometry. This is roughly 5% of Rei.
Since Rew is significantly smaller than the inner cylinder Reynolds number Rei, one needs much
larger Ta to realize the Reynolds numbers in column 2 of Table I. Also there is a significant
difference between the RB-wind and the TC-wind: While in RB the wind is the only coherent fluid
motion available in the (otherwise resting) system, in TC there is an intrinsic stimulus for fluid
motion due to the inner cylinder rotation (or in general the difference in the rotation frequencies
of the two cylinders). Thus there are two different velocities available, the wind Uw and the inner
cylinder velocity Ui. To improve insight, Table III in the Appendix provides detailed numbers for
the fluctuation amplitude due to the wind Uw instead of the inner cylinder velocity Ui.
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In any case, presently no experimental data on the wind velocity profiles are available for TC
flow. So we do not know whether the predicted log-profile with curvature corrections (22) exists and,
if so, how far it will extend towards the gap center. To detect the curvature corrections experimentally,
an extension towards the center will be crucial (as otherwise the correction factor will be too close
to 1), and, as discussed above, obviously a small value of η – strong geometric NOBness – will help
too. In Sec. IV we will discuss these issues in much more detail for the angular velocity profile, for
which experimental data exist.

IV. THE ANGULAR VELOCITY PROFILE

In TC flow, as has been explained, the mean angular velocity profile �(r) – and not the
azimuthal velocity Uϕ(r) – corresponds to the temperature profile in RB thermal convection. This
conclusion, as has been detailed in Sec. II, is based on the comparison of the respective expressions
for the transport currents, which one can derive from the Navier-Stokes and Boussinesq equations.
To calculate the �-profile in TC flow we start from the equation of motion (4) for the azimuthal
velocity uϕ(�x, t). Again we decompose the equation into the long(er)-time mean and the fluctuations,
uϕ = Uϕ + u′

ϕ = r�(r ) + u′
ϕ . Again we have ∂t =̂ 0, ∂ϕ p = 0, ∂ϕUr = 0 and arrive at

(�u · �∇)uϕ

t
+ ur uϕ

t

r
= ν

(
�Uϕ − Uϕ

r2

)
. (24)

Reorganize the nonlinear lhs: (�u · �∇)uϕ

t
+ ur uϕ

t

r = �∇ · (�uuϕ)
t + ur uϕ

t

r = 1
r ∂r (rur uϕ

t ) + ur uϕ
t

r

= ∂r ur uϕ
t + 2 ur uϕ

t

r = 1
r2 ∂r (r2ur uϕ

t ). Then reorganize the rhs: ν(�Uϕ − Uϕ

r2 ) = ν( 1
r ∂r r∂rUϕ −

Uϕ

r2 ) = ν
r2 (r∂rr∂rUϕ − Uϕ) = ν

r2 ∂r (r3∂r
Uϕ

r ). Thus time averaging leads to r2u′
r u′

ϕ

t − νr3∂r
Uϕ

r = con-
stant. A very similar expression is well-known from the derivation of the angular velocity current,
see EGL.21 Apparently it is Uϕ

r , i.e., �(r), the angular velocity, which is relevant, since it is ∂r� and
not ∂rUϕ which determines the current as well as the profile(s) near the wall(s), as just derived.

Also the nonlinear term can be expressed in terms of ω′ by separating a factor of r from u′
ϕ . For

the corresponding Reynolds stress we suggest the ansatz u′
rω

′t = −κturb(r )∂r�(r ). The turbulent
transport coefficient κ turb(r) has dimension �2/t; we call it the turbulent ω-diffusivity (in analogy to
the turbulent temperature diffusivity in RB flow). Having thus modeled the ω-Reynolds stress, the
� profile satisfies the equation

r3 (ν + κturb(r )) ∂r�(r ) = r3
i,oν∂r�

∣∣
i,o = −Jω. (25)

(The Reynolds stress u′ω′t does not contribute at the cylinder walls ri, o.) This results in the profile
equation

∂r�(r ) = −Jω

r3(ν + κturb(r ))
. (26)

If Jω is positive, i.e., transport from the inner to the outer cylinder, the �-profile decreases with r, as
it should be.

We now have to model the turbulent ω-diffusivity κ turb(r). To start with, it seems reasonable to
again use the mixing length ansatz, saying that κ turb(ρ) ∝ distance ρ = r − ri from the inner wall
times a characteristic fluctuation velocity. But this time (i.e., for the angular velocity rather than
for the wind velocity) there are two candidates for such a characteristic velocity amplitude. First,
again there is u∗

(z,i),(z,o), the transverse velocity fluctuation amplitude due to the (kinetic) wall stress
tensor component 
rz(ri,o), responsible for the wind profile Uz(r) as discussed in Sec. III, where
(u∗

z )2 = 
r z = ν∂rUz . However now, in addition, there is another wall stress induced fluctuation
amplitude, because Jω/r2

i,o = ri,oν∂rω also has the dimension of a squared velocity. Note that
Jω/r2

i,o = 
rϕ(ri,o) ≡ (u∗
i,o)2 is the r, ϕ-component of the (kinetic) wall stress tensor, cf. Ref. 20,

Sec. 15, Eq. (15.17) and also EGL,21 Sec. 3, Eq. (3.5). We address u∗
i,o as the longitudinal velocity

fluctuation amplitude.
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TABLE II. The longitudinal velocity fluctuation amplitudes u∗
i (second column) in the inner cylinder boundary layer for some

Taylor numbers Ta (first column). Third column indicates the respective values of the fluctuation Reynolds number Re∗
ω,i in

the inner cylinder BL. The fourth column shows the respective viscous length scales δ∗
i = ν/u∗

i . The fifth column offers the
inner cylinder radius 0.2000 m in the respective δ∗

i -wall units, known as r+
i . The gap half width in these wall units (sixth

column) is (d+/2 =) d/2
δ∗

i
= d

2ri
r+

i = 1
2 (η−1 − 1)r+

i = 0.1985r+
i , i.e., d+/2 is about r+

i /5. Column seven shows d+/100,

below which the experimental data are closest to a log-law. Column eight shows Fi, which equals Re∗
ω,i /Rei = ω∗

i /ωi ,
the relative ω-fluctuation amplitude. The last (ninth) column compiles the factor u∗

z /u∗
i , the ratio of the transversal and

longitudinal velocity fluctuation amplitudes; this is obtained with the values from column 2 of this table and column 4 of
Table I.

Ta u∗
i (ms−1) Re∗

ω,i = u∗
i ·d
ν

δ∗
i = ν

u∗
i

ri
δ∗

i

d/2
δ∗

i

d/100
δ∗

i
Fi = Re∗

i
Rei

= ω∗
i

ωi

u∗
z

u∗
i

6 × 1010 0.0620 4 900 16.2 × 10−6 m 12 300 2 440 49 2.47 × 10−2 1.48
4.6 × 1011 0.151 12 000 6.61 × 10−6 m 30 300 5 980 120 2.18 × 10−2 1.54

3 × 1012 0.344 27 200 2.91 × 10−6 m 68 700 13 540 271 1.94 × 10−2 1.61
6 × 1012 0.465 36 700 2.15 × 10−6 m 93 100 18 420 368 1.85 × 10−2 1.65

It deserves experimental check or theoretical proof, whether the longitudinal velocity fluctuation
u* and the transversal one u∗

z are of equal size or are different. An argument for the former is that
the Navier-Stokes equations couple all velocity components so strongly that they all fluctuate with
the same amplitude. Another argument in the same direction is that both 
rz and 
rϕ express the
(kinetic) shear along the cylinder wall, one in axial (stream-wise), the other one in azimuthal (lateral)
direction.

Thus there are two possible expressions for the turbulent ω-diffusivity: κturb ∝ ρ · u∗
z or κ turb

∝ ρ · u*. Until sufficiently clarified we use the latter one, being aware that the remaining constants
just differ by the factor of u∗

z /u∗, possibly depending on the Taylor number Ta. We shall find, see
Table II, that this ratio (for the inner cylinder) turns out to slightly increase with Ta, in the given Ta
range increasing from 1.3 to 1.6. Its deviation from 1 might have its origin in an insufficient estimate
of u∗

z , in which the parameters b and κ̄ had to be guessed from pipe, channel, or plate flow, cf.
Sec. III. If these fit parameters would depend on Ta, that would be reflected in a Ta-dependence of
the fluctuation amplitude ratio u∗

z,(i,o)/u∗
i,o.

Our ansatz for the turbulent ω-diffusivity thus is, at first in analogy to plane flow,

κturb(ρ) = K Lρu∗ with ρ = r − ri or ρ = ro − r. (27)

The longitudinal von Kármán constant K L
i,o may or may not depend on the Taylor number, as does

the transversal von Kármán constant K T
i,o from Eq. (16). Again, u* and KL may be different for the

inner and outer boundary layers. In the following, for simplicity, we have in mind the inner cylinder,
omitting the label i, but the corresponding equations hold for the outer BL, respectively.

Introduce now as usual the viscous length scale

δ∗ = ν/u∗. (28)

The wall distance and the inner cylinder radius in ω-wall units are

ρ+ = ρ/δ∗; r+
i = ri/δ

∗. (29)

As a normalized angular velocity which increases with distance from the wall we define

�̃(r ) := ωi − �(r )

ωi
. (30)

This dimensionless profile �̃(r ) is zero at the cylinder surface and increases with increasing wall
distance ρ+. In contrast to ω+ it is normalized with the inner cylinder rotation frequency ωi instead
of u∗

i /ri ≡ ω∗
i . The equation for �̃(ρ+), from Eq. (26), then reads

d�̃

d(ρ+/r+
i )

= Fi
1

( 1
r+

i
+ K L ρ+

r+
i

)
(

1 + ρ+
r+

i

)3 , (31)
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where the distance from the wall now has been expressed in terms of

x = ρ+/r+
i = ρ/ri . (32)

Here the dimensionless constant Fi, the slope factor of the profile equation, is defined as

Fi ≡ Jωδ∗
i

r3
i ωiν

= 2(1 − μ)

1 − η2
· Nω

r+
i

. (33)

Up to geometric features (η and r+
i ) and the rotation ratio μ = ωo/ωi, Fi is just the ω-Nusselt

number Nω. To derive the slope factor Fi from Eq. (26) one writes Jω as Jω
lam · Nω and then uses

Jω
lam = 2νr2

i r2
o

ωi −ωo

r2
o −r2

i
from Eq. (3.11) in EGL.21 Note that the slope factor Fi does not depend on the

longitudinal von Kármán constant KL.
Yet another form of Fi is of interest. Reminding Jω/r2

i = (u∗
i )2 and using the definition

δ∗
i = ν/u∗

i of the inner length scale, one arrives at

Fi = u∗
i

riωi
= u∗

i

Ui
= ω∗

i

ωi
(34)

(and correspondingly for the boundary layer at the outer cylinder). Here we have introduced the
fluctuation scale ω∗

i of the angular velocity by

ω∗
i ≡ u∗

i /ri . (35)

It is the very ratio of the angular velocity fluctuation amplitude ω∗
i and the inner cylinder rotation

rate ωi which measures the size Fi of the �̃-profile slope. Next, Fi can be incorporated in the
normalization of the profile, giving the profile in the usual wall units,

ω+(ρ+) ≡ ωi − �(r )

ω∗
i

, (36)

as already anticipated in Eq. (2). ω+(ρ+) satisfies the profile equation in wall units,

dω+(ρ+)

dρ+ = 1

(1 + K Lρ+)
(

1 + σi,o
ρ+
r+

i,o

)3 . (37)

Expressed in terms of x = ρ+/r+
i,o = ρ/ri,o this equation reads

dω+(x)

dx
= 1

( 1
σi,or+

i
+ K L x)

(
1 + σi,ox

)3 . (38)

The advantage of this latter representation (38) in terms of x rather than in terms of ρ+ is that –
apart from the very small correction 1/r+

i,o – the profile equation (38) is universal, i.e., valid for all
Ta. Such universal measure x for the wall distance (cf. Eq. (32)) can be introduced in TC in contrast
to the plate flow case, as ri (or ro) serve as natural length units, presenting the curvature radii of the
walls.

We now discuss the obtained results on the slope of the angular velocity:

(i) If both conditions ρ+ � r+
i,o and ρ+ � 1/K L

i,o hold, one finds, as expected, the linear, viscous
sublayer also for the angular velocity profile, ω+ = ρ+.

(ii) In case of rotation ratio μ = 1, i.e., ωo = ωi, the slope is Fi = 0 and from Eq. (31) we obtain
d�̃
dρ+ = dω+

dρ+ = 0. The angular velocity thus is constant, we have solid body rotation.

(iii) As in general r+
i,o – the inner (or outer) cylinder radius in terms of the tiny viscous scales – is

large, 1 + σi,oρ
+/r+

i,o = 1 + σi,ox varies only slightly but visibly between 1 at the wall and its
largest value at mid-gap 1 + σi,od+/(2r+

i,o). We have discussed this already for the axial velocity
profile in Sec. III. Thus, the profile slope according to Eq. (37) again is that of a logarithmic
profile ∝1/(1 + KLρ+), modulated by a reduction factor, which here is 1/r3 instead of only 1/r
as in the case of the wind profile. Therefore for fixed wall distance the curvature effects are
much stronger and are much better visible in the angular velocity profile, as compared to those

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.89.45.179 On: Wed, 12 Aug 2015 09:04:44



025114-13 Grossmann, Lohse, and Sun Phys. Fluids 26, 025114 (2014)

in the wind velocity profile. The physical reason for this significantly stronger reduction ∝1/r3

of the profile slope of the azimuthal velocity than for the axial velocity with ∝1/r is that the
azimuthal motion has to follow the curved, circular cylinder surface, while the axial motion is
along the straight axis of the cylinder. The slope reduction is the stronger, the larger the gap or
the smaller η, reflecting the stronger curvature effect. Also, for TC-devices with the same gap
width d, the reduction is the larger the smaller the inner cylinder radius is.

To analytically calculate the angular velocity profile in detail, one has to integrate the profile
equation (38). This can be done analytically by employing decomposition into partial fractions.
We will do so using the fact that in general 1/r+

i � K L x or 1 � KLρ+. Then the partial fraction
decomposition of the rhs of Eq. (38) reads (apart from the factor 1/KL)

1

x(1 + σ x)3
= A

x
+ B3

(1 + σ x)3
+ B2

(1 + σ x)2
+ B1

1 + σ x
. (39)

The coefficients can be calculated by multiplying with the denominator on the lhs, leading to

1 = A(1 + σ x)3 + x
[
B3 + B2(1 + σ x) + B1(1 + σ x)2

]
. (40)

The four coefficients can all be calculated by comparing the respective x-powers. The result is
A = 1, Bi = −σ for all i = 1, 2, 3. They of course do not depend on any system parameter. We now
integrate Eq. (38) for the slope of the angular velocity with the decomposition (39) term by term and
get

ω+(x) = 1

K L

(
ln x + 1/2

(1 + σ x)2
+ 1

(1 + σ x)
− ln(1 + σ x)

)
+ B ′. (41)

The last term B′ is the usual additive shift in the log-regime and has to be determined from experiment.
Subtracting −1/2 and −1 from the two non-ln-terms, borrowed from B′, i.e., absorbing 1.5/KL in B′

(which then we call B) we finally obtain the main result of this paper, namely, the universal (i.e.,
Ta-independent) angular velocity profiles, including all explicit curvature effects originating from
the r3 term in the transport current of the concave (inner, σ = 1) or convex (outer, σ = −1) cylinder
walls:

ω+(x) = 1

K L

(
ln x − σ x(2 + 3

2σ x)

(1 + σ x)2
− ln(1 + σ x)

)
+ B. (42)

The angular velocity profile thus is a log-profile with downward corrections in the inner cylinder
BL and upward corrections in the outer cylinder BL. It is plotted for the inner (outer) cylinder BL
in Figure 3 (Figure 4) in various representations. For very small x the first log-term will dominate.
This slowly increasing log-term will – with increasing x – be turned downwards, representing the
downward trend of the profile. In the limit r+

i,o → ∞, channel flow, we have x → 0 and the mere
log-profile ∝ (K −1

L ln x + B) is recovered. Equation (42), together with the definition (32) of the
dimensionless length x, thus nicely reveals that in general there is an extra intrinsic length scale r+

i,o
in the TC profile, in contrast to that for plate flow.

From Eq. (2) we can now also calculate the universal (i.e., Ta-independent) azimuthal velocity
profile, for example, for the inner cylinder BL,

u+(x) = (1 + x) ω+ − F−1
i x, (43)

which is also shown in Figure 3 in various representations. This relation between u+ and ω+ has
already been given in another form in Eq. (2). Due to the extra factor 1 + x in front of ω+ and due to
the additive term, not both profiles, ω+(x) and u+(x), can be log-laws. Since within our framework
ω+(x) is a log-law, see Eq. (42), thus u+(x) cannot be. For smaller gaps (η not too far from 1) this
difference will not be visible because of the experimental scatter and finite precision, but for larger
gap (thus smaller η), the azimuthal velocity profile u+(x) will clearly deviate from the log-law of the
wall. The difference between the ω+-profile and the u+ profile can nicely be seen from Figures 3(a),
3(c), and 3(d): The curve for ω+ follows the ideal von Kármán log-law (straight line in Figs. 3(a) and
3(c) and straight horizontal line in Fig. 3(d)) much longer than that one for u+, before the curvature
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FIG. 4. Same as Figure 3, but now for the outer boundary layer, i.e., the universal (i.e., Ta-independent) angular velocity
profile ω+(x) (Eq. (42)) and the azimuthal velocity profile u+(x) = (1 − ρ+/r+

o )ω+(x) (for the outer cylinder at rest) for the
outer cylinder boundary layer as they follow from the present theory on (a) a log-linear scale and (b) a linear-linear scale,
in comparison with the experimental data from Ref. 12 for Ta = 6.2 × 1012. (c) Zoom-in of (a). In (d) the corresponding
compensated plots xdu+/dx and xdω+/dx are offered.

corrections for larger x set in and bend down the ω+(x) curve—for the u+-curve the deviations from
the log-law set in earlier and are stronger.

The corresponding results for the outer cylinder BL are shown in Figure 4 in various represen-
tations. The present theory suggests that the angular velocity for the outer cylinder boundary layer
bends up instead of bending down for the inner cylinder boundary layer. This is due to the difference
between the concave and the convex surface near the inner and outer cylinder. At the inner cylinder
the distance ρ increases from a concave wall, while at the outer cylinder it increases from a convex
wall.

V. CURVATURE EFFECTS IN THE TURBULENT VISCOSITY

To further quantitatively illustrate the results in a better way, we use the geometrical parameters
of the T3C facility,13 which has η = 0.7158. The inner cylinder explicit concave curvature correction
factor

A =
(

1 + ρ+

r+
i

)3

=
(

1 + ρ

ri

)3

= (1 + x)3 (44)

for the angular velocity slope (Eq. (37)) is shown in Figure 5(a) for two different Ta of the experiments
of Ref. 12. At the end of the log-range (assumed to be at d/100) we find an angular velocity slope
decrease by a factor of 0.9882, which would clearly be hard to visualize. For small gap samples,
say with η = 0.9, the correction factor will be even closer to one. In contrast, if η = 0.5, which
numerically is available with DNS, at the end of the log range (again assumed to be d/100) the
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A = 1 + ρ+/r+
i

3

A = 1

FIG. 5. (a) (Inverse) correction factor A =
(

1 + ρ+
r+
i

)3

as function of log10ρ
+ for the two Taylor numbers of Figure 2(a);

here η = 0.7158 as in Ref. 12. The correction factor A is applied to the angular velocity for the inner cylinder boundary layer
and in (b) we show the compensated angular velocity slope xdω+/dx vs x = ρ+/r+

i on a log-linear scale.

log-slope is reduced by a factor of 0.9706, which may become visible. For larger wall distances
ρ � d/100 the correction factor A gets visibly smaller than 1. However, for these distances it was
found experimentally that one is already far away from a log-range, see Figure 2. In Figure 5(b) we
apply the correction factor to the angular velocity slope Eq. (38), which is universal (i.e., independent
of Ta) for large wall distances. We see that for small wall distances the explicit curvature correction
factor indeed brings the compensated profile closer to the log-profile (i.e., a horizontal line in this
plot), but that this curvature effect is very small. The correction factor only becomes substantial
close to the outer scale ρ ∼ d/2 where the log-regime clearly has already ceased.

In Figure 3, in addition to the universal theoretical profiles for ω+(x) and u+(x), we also
include the experimentally measured12 profiles for the largest available Taylor number Ta = 6.2
× 1012. We see that the experimental curves qualitatively follow the same trend as the theoretical
ones. In particular, the ω+(x) profiles are closer to the log-profiles as the u+(x) profiles, and both
show increasing deviations from the log-profiles for increasing x. However, there are pronounced
quantitative differences between theory and experiment: First of all, for rather large x ∼ 0.1 the
experimental profiles bend up again. This is to be expected as then one is already very close to the gap
center and the effect of the opposite side of the gap becomes relevant—one is then simply far away
from the boundary layers. But second, and more seriously, already at x ∼ 4 × 10−3, corresponding
to a wall distance of d/100, the quantitative deviations between theory and experiment become very
visible.

What are the reasons for the quantitative discrepancies between theory and experiments? The
theory has made certain assumptions like the existence of a turbulent ω-diffusivity and its functional
dependence (27) on the wall distance, which is assumed to be linear. Though on first sight this
looks like a relative innocent assumption and for small enough wall distances should be valid, as
sufficiently near to the wall this will appear as if plane, for large enough wall distances the curvatures
of the inner and outer cylinder or the gap width d = ro − ri may also affect the turbulent ω-diffusivity,
leading to deviations from linearity and thus to modified profiles as compared to our theory.

Let us assume for the time being that the nonlinear dependence of the ω-diffusivity on the wall
distance is the only reason for the deviations between the theoretical data and the experimental ones.
Then we can use the latter ones to calculate the actual wall distance dependence of the ω-diffusivity
and physically interpret it. To do so, we start from Eq. (26), but rather than assuming a linear behavior
of κ turb(r) with the wall distance as we did before, we leave the wall distance behavior open and
write the ansatz

κturb(ρ) = u∗
i ri · g(ρ/ri ) (45)
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FIG. 6. (a) Turbulent ω-diffusivity g(x) following from the ω-profile data of Ref. 12 at the inner cylinder for three different
Ta. The curves are calculated from Eq. (47). In (b) a zoom-in of the curves for small x is shown. For small x, the turbulent
ω-diffusivity g(x) is linear and for large x it saturates on a plateau, reflecting the finite extension of the flow, but in between it
clearly increases stronger than linearly.

(and correspondingly for the outer cylinder) with a yet unknown function g(x) = g(ρ/ri), which we
will now calculate from the data. The ansatz (45) takes care of the dimensions of a turbulent viscosity
and of its physics, namely being a typical velocity times a typical length scale, both characteristic
for the turbulent flow considered. The relevant velocity is the fluctuation velocity u∗

i , responsible for
the transport by turbulence. For small wall distances the relevant length scale is ρ, as in case of plane
flow and as we had assumed up to now throughout, but for larger wall distances it is ri, representing
the curvature of the inner cylinder. The yet unknown dimensionless function g(ρ/ri) describes the
crossover between these two regimes: It has to start linearly g(x) = KLx in the argument to reproduce
our former assumption κturb = K Lu∗

i ρ and thus the log-law near to the wall, where the curvature is
not yet visible, but then should saturate towards a constant so that in the center of the flow one has
κturb ∼ u∗

i ri .
The crossover function g(x) can be calculated from the experimental data of Ref. 12: With the

ansatz (45) Eq. (38) generalizes to

dω+(x)

dx
= 1

( 1
σi,or+

i,o
+ g(x))

(
1 + σi,ox

)3 . (46)

This equation is readily solved for the crossover function g(x), namely,

g(x) = 1

(1 + σi,ox)3 dω+
dx

− 1

σi,or+
i,o

. (47)

In Figures 6 and 7 the crossover function g(x) is shown for the inner and outer boundary layer,
respectively, both for three different Ta, calculated from the experimentally measured ω-profiles at
the inner wall.12 Indeed, in both cases g(x) is linear for small x as expected and saturates for very
large x towards a constant as then the opposite wall becomes relevant and no eddies larger than of
order half gap width d/2 can exist. However, in between small x and large x we observe a stronger
than linear increase in g(x). The reason must be that more and more eddies contribute to the turbulent
transport towards the wall (or they transport more efficiently) than for the case of plate flow. The
stronger than linear increase in g(x) implies that the ω+(x)-slope become less, see Eq. (46). Of course
there still is the explicit r3-term in the profile equation, whose effect we have studied already above.
This reduces the slope further.

To summarize: The experimentally observed reduction of the profile slope or bending downward
of the profile has two reasons: First, the explicit r3-term coming from the curvature effect in the
current, second the increase of the turbulent ω-viscosity g(x), also attributed to the curvature and thus
described by a function of the variable ρ/ri, o. We think that these two curvature effects – explicit due
to the corrected transport and implicit due to corrected ω-diffusivity – are the main reasons for the
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FIG. 7. Same as Figure 6, but now for the outer cylinder ω-profiles.

strong bending of the ω(x) profiles. An additional reason for the quantitative discrepancy between the
theoretical ω-profiles (42), which was based on a linear turbulent ω-diffusivity, and the experimental
ones may also be that the theory does not take full notice of the remaining Taylor roll-structure of
the flow and the resulting flow inhomogeneity in axial (z-)direction. From the numerical simulations
of Ostilla et al.24 we know however that the boundary layer profiles pronouncedly depend on the
axial direction, at least up to Taylor numbers Ta ∼ 1010 (much larger ones are presently numerically
not yet achievable), but presumably beyond. Log-layers develop in particular in the regions in which
plumes are emitted and in shear layers, but not in regions in which plumes impact. For increasing
Ta the axial dependence gets weaker, but it still persists at Ta = 6.2 × 1012, cf. Ref. 4, for which
we present the experimental data here and which is the largest available Taylor number. In fact,
as seen from Figure 2(b) of Ref. 4 at Ta = 1.5 × 1012 the local Nusselt number can vary from
height to height (i.e., axial dependence in the lab) even up to a factor of two, with the corresponding
consequences on the local profiles. The reason for the persistence of the axial dependence is the
limited mobility of the Taylor rolls, due to their confinement between the upper and lower plates.
Though the aspect ratio – TC cell height dived by gap width d – in experiment is � = 11.7,4 the
six to eight Taylor rolls are still relatively fixed in space. The profile measurements of Ref. 12 took
place at fixed position, namely mid-height. The theoretical results should be understood as some
height-averaged results, and strictly speaking such height-averaging only makes sense if there is no
or hardly any axial dependence.

Clearly, it would be of utmost importance to measure the axial dependence of the angular
velocity and azimuthal velocity profiles, in order to quantify it and to see whether the relatively
poor quantitative agreement between theory (ignoring above discussed correction to g(x)) and
experiment is better (or worse) at other heights. Also numerical simulations to further explore the
axial dependence of the profiles would be useful, similar to what had already been done in Ref. 24,
but now for both ω+(x)- and u+(x)-profiles and also profiles of the axial (i.e., wind) velocity, for even
larger Ta, for smaller η, and finally for different values of co- and counter-rotation, i.e., different μ,
but of course all in the turbulent regime. Work in this direction is on its way.

Finally, we estimate the wall parameters, the amplitude u* of the azimuthal velocity fluctuations,
and the slope parameter Fi, all based on experimental data. In the experiment12 the outer cylinder
was kept at rest, ωo = Reo = 0. Then (at the inner cylinder) (u∗)2 = Nω Jω

lam/r2
i = Nωνr2

o ωi/(ra · d).
Expressed in terms of Ta (for ωo = 0) one has ωi = νr2

g

√
T a/(r3

a d) and Rei = (η2/( 1+η

2 )3)
√

T a =
0.8115

√
T a; here ra, rg are the arithmetic and geometric mean radii. The Nusselt number Nω as

function of the Taylor number Ta for the T3C apparatus has already been measured for T3C in
Ref. 5. Putting all together leads to

u∗
i =

√
6.81 × 10−3

νrorg

r2
a d

T a0.4375. (48)
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Inserting the material and geometry parameters of T3C as given above one obtains an explicit
expression for u∗

i ,

u∗
i = 1.1948 × 10−6 × T a0.4375 ms−1. (49)

This allows us to determine all physical parameters of interest. They are compiled in Table II.

VI. CONCLUDING REMARKS

In summary, we have derived a Navier-Stokes-based theory for the velocity and angular velocity
profiles in turbulent TC flow, following the same approach as that one of Ref. 11 for RB flow, but
in cylinder geometry appropriate for TC flow, taking proper care of the wall curvature(s). The main
findings are

� that not too far from the cylinder the angular velocity profile follows an universal log-law
(Eq. (42)), reflecting the curvature corrections,

� that the universal azimuthal velocity profile Eq. (43) correspondingly cannot follow a log-law,
� and that also the axial velocity profile follows an universal log-law, Eq. (22), but with weaker

curvature corrections, due to the less pronounced effect of the curvature in the flow direction.

Though the experimentally measured angular velocity and azimuthal velocity profiles at fixed mid-
height qualitatively follow above trends, the quantitative agreement is not particularly good as the
measured deviations from the log-law are much stronger. We explain that this is mainly due to the
nonlinear dependence of the ω-diffusivity on the wall distance for large enough wall distances and
in addition partly also due to the roll structure of the flow, leading to axial dependences of the
flow profiles. Assuming that the first origin is the most relevant one, we calculate the wall distance
dependence of the ω-diffusivity from the experimental data, finding a linear dependence for small
wall distances as expected and a saturation behavior for large wall distances. However,

� for medium distances from the inner wall the turbulent ω-diffusivity increases stronger than
linearly as apparently more eddies contribute to the ω-transport or they contribute more
efficiently.

Finally, we suggest various further experimental and numerical measurements to further validate or
falsify the presented theory.
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APPENDIX: ALTERNATIVE CHOICE OF TRANSVERSAL FLUCTUATION AMPLITUDE

We here check the idea that the relevant velocity for determining the transversal fluctuation
amplitude u∗

w,z is not the inner cylinder rotation velocity Ui but, instead, the coherent flow – or wind
– due to the remnants of the rolls, called Uw. Its amplitude has been given for the T3C facility in
Ref. 5, p. 130, to be Rew = 0.0424 × T a0.495; this holds for μ = 0 and in the range 3.8 × 109 � Ta
� 6.2 × 1012. This rather small value for the wind Reynolds number rests on PIV measurements,
cf. Ref. 4. A similar but even smaller value has been obtained with DNS.25 In the regime 4 × 104 �
Ta � 1 × 107 it is Rew = 0.0158 × T a0.53. The relevant quantities are given in Table III.
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TABLE III. The wind fluctuation amplitude u∗
w,z based on the wind Reynolds number for different Taylor numbers (column

1). The corresponding wind Reynolds number Rew = 0.0424 · T a0.495 are listed in column 2. The next columns, 3 and
4, show the respective wind velocities Uw = Rew · ν/d in m/s (with system parameters ν = 1 × 10−6 m2 s−1 and d =
0.0794 m) as well as the wind velocity relative to the inner cylinder rotation velocity, Uw/Ui , turning out to be of order
4.6%, only very slightly depending on Ta; it is Uw/Ui = 0.052193 · T a−0.005, were we used Rei = 0.8115Ta0.5 for a = 0, as
was reported in the main text. Column 5 offers the relative fluctuation amplitude u∗

w,z/Uw , obtained from the formula with
Lambert’s W-function derived in Ref. 23, u∗

w,z/Uw = κ̄/W (3.2Rew) (again we have used κ̄ = 0.4 as von Kármán’s constant
and b = 0.125 to determine the argument κ̄

b Rew of W . Column 6 contains the respective transversal fluctuation amplitudes
u∗

w,z = Uw · κ̄
W (3.2Rew ) . Finally in column 7 the ratios of the transversal wind fluctuation amplitude u∗

w,z and the longitudinal
angular velocity fluctuation amplitude u∗

i are offered for the Ta-values of interest from Table II. Note that the transversal wind
fluctuation amplitude is about 9.5% of the longitudinal ω-fluctuation amplitude, determined in Sec. IV, pretty independent
of Ta.

Ta Rew Uw = Rew
ν
d

Uw
Ui

u∗
w,z

Uw
= κ̄

W (3.2Rew ) u∗
w,z = Uw

κ̄
W (3.2Rew )

u∗
w,z
u∗

i

6 × 1010 9174 0.1161 m/s 0.0461 0.04887 5.6738 × 10−3 m/s 0.092
4.6 × 1011 25144 0.3183 m/s 0.0456 0.04401 14.0084 × 10−3 m/s 0.093
3 × 1012 63612 0.8052 m/s 0.0452 0.04029 32.4415 × 10−3 m/s 0.094
6 × 1012 89650 1.1291 m/s 0.0451 0.03906 44.1026 × 10−3 m/s 0.095
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