N84-32168

FINAL REPORT
TITLE: Theoretical Design and Analysis of the Layered Synthetic Microstructure Optic for the Dual Path X-Ray Telescope
AUTHORS: D. L. Shealy, S. Chaco
CONTRACT NO: NAS8-35916
PERIOD: MARCH OI - MAY 31,1984
DATE OF PUBLICATION: June 10,1984
PRINCIPAL INVESTIGATOR: DAVID L. SHEALY, PhD
Physics Department, Room 202
Physical Sciences Building University of Alabama in Birmingham
Birmingham, Alabama 35294 205-934-4736
PREPARED FOR: George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812
DISTRIBUTION (17 copies + repro)
5/AS24D
1/ATO1
10 + repro/ ES 52, ATTN: R. B. Hoover $1 / E M$ 13A-19
NASA Scientific and Technical Information Facility (1 copy + repro)
PAGES
ABSTRACT 1
I. INTRODUCTION 2
II. MATHEMATICAL ANAYLSIS 5
A. Ray Trace Equations for the Inner Channel of the Dual Path WS/LSM X-RAY Telescope 5

1. Convex Sphere 10
2. Concave Ellipsoid 13
3. Convex Hyperboloid 15
4. General Aspheric with Constant Optical Path Length 17
B. Cubic Spline Representation for the Constant Optical Path Length LSM Mirror of the Stanford/MSFC Dual Path X-ray Telescope 21
III. RESULTS 22
5. RMS Blur Circle Radius Analysis and Geometrical Properties of LSM Optic. 23
6. Recommended Final Configuration of LSM Optic 29
IV. CONCLUSIONS 30
REFERENCES 31
Figure 1 32
Figure 2 33
Figure 3 34
Figure 4 35
Figure 5 36
Figure 6 37
Figure 7 38
Figure 8 39
Figure 9 40
Figure 10 41
Figure 11 42
Table 1 43
Table 2 44
Table 3 45
Table 4 46
Table 5 47

I. INTRODUCTION

During the past twenty years, the wolter I Telescope has been the most common telescope configuration used in x-ray astronomy. An interesting summary of work in the field thru 1978 is given in Ref. 2. The Wolter I telescope is a confocal paraboloid and hyperboloid operating at small glancing incidence angles as shown in Fig. 1. Normally, an aperture stop blocks light from directly hitting the secondary (hyperboloid), and the only mode for light to be imaged on the focal plane is through reflection from the paraboloid and then the hyperboloid, which will be termed the outer channel. A common problem with all glancing incidence x-ray telescopes is the small effective collecting area. A nested x-ray telescope ${ }^{3}$ improves the telescope sensitivity, but fabrication costs and alignment problems arise.

As a result, Hoover ${ }^{4}$ has proposed that the collecting area of a Wolter I x-ray telescope can be increased by constructing a third mirror such that the radiation incident upon the second surface (hyperboloid) of the type I telescope is reflected via
a third mirror to the focal plane in concert with the radiation incident upon the outer mirror (paraboloid) of the type I-ray telescope as shown in Fig. 2. Foreman and Cardone ${ }^{5}$ have used the Wolter I x-ray telescope as a base system for the design of a three mirror x-ray telescope. The general result of Foreman's analysis is that the resolution of the outer channel is of the order of arc-seconds, while the resolution achieved via the inner channel is of the order of arc-minutes.

The present work is concerned with the development of a "dual path x-ray telescope" which' permits x-rays that are directly incident upon the secondary mirror of the type I telescope (hyperboloid) to be reflected via a normal incident, layered synthetic microstructure (LSM) mirror located near the pseudo-focus of the hyperboloid to a second focal plane located near the structure of the type I telescope. See Fig. 3. This effort will design and analyze the LSM optic that will be utilized to couple the secondary of a Wolter/ Schwarzschild (WS) x-ray telescope to a 25 mm Ranicon x-ray detector with 50 micron pixel size. The specific tasks to be accomplished in this study are described in the ."Scope

```
of Work" given below.
```


SCOPE OF WORK

1. Generate equations for the internal secondary element of the Stanford/ MSFC X-ray Rocket Experiment Mirror by fitting the aspheric element to cubic spline function representations.
2. Develop ray trace equations for the inner channel of the Dual $-P a t h$....W.S/LSM X-ray Telescope. This effort will include considerations of the LSM optic configured as a convex hyperboloid, ellipsoid, sphere or general aspheric element using constant optical path conditions.
3. Compute the RMS blur circle radius as a function of field angle on a flat image plane and evaluate the effects of defocusing the image plane.
4. Calculate the total range of angles over which the Wolter/LSM system will operate. Establishment of these angles includes considerations of the Ranicon position, LSM magnification and position and field of view of the Ranicon. Establish dimensions of the LSM to insure no vignetting of the primay beam, while providing maximum collection of the secondary beam.
5. In consultation with the MSFC Principal Investigator, select the final configuration of the mirror element that will be flown as part of the Rocket payload. Provide equations of the surface of the optic and the mirror parameters that will be required by the optical house for fabrication of the desired LSM element.

The specific principles, procedures and equations relating
to the "Scope of Work" items 1 and 2 are given in section II of this report, and the results relating to items 3, 4, and 5 are given in Section III of this report.
II. MATHEMATICAL ANALYSIS
A. Ray Trace Equations for the Inner Channel of the

Dual Path WS/LSM X-Ray Telescope

A general discussion of the ray tracing technique is given in Ref. 6. This report summarizes the equations used to ray trace the inner channel of the dual path WS/LSM x-ray telescope. The equations for the surface of the internal secondary mirror of the Stanford/MSFC WS x-ray telescope are given by

$$
\begin{align*}
& R_{2}=d \sin \beta \tag{la}\\
& z_{2}=d \cos \beta \tag{lb}\\
& \text { with } \\
& 1 / d=\frac{\cos 4 \alpha}{f}\left[\frac{1-\cos \beta}{1-\cos 4 \alpha}+\frac{1}{2}(1+\cos \beta)\left(\frac{\tan ^{2}(\beta / 2)}{k}-1\right)^{1+k}\right] \\
& k=\tan ^{2}(2 \alpha) \\
& \alpha=\beta^{*} / 2=1 / 2 \arctan \left(r_{0} / f\right)
\end{align*}
$$

where f is the axial focal length of the W telescope, which is equal to 50 in. for the inner Stanford/MSFC WS telescope, and r_{0} is the radius at the WS primary-secondary mirror intersection point, which is equal to 6.19 in. The surface parameter β varies from 7.057309 at the intersection point to 7.417018 at the rear of the telescope. (β^{*} specifies the intersection point of WS mirrors.) A discussion of the $W S$ surface equations is given in Ref. 7. Table 1 presents a sample of the numerical data for the internal secondary mirror surface which was computed from Eq.(1a-b). Initially, it was proposed and was included in ITEM 1 of the SCOPE OF WORK to represent the W secondary by a cubic spline polynomial to facilitate ray tracing. However, it has been found to be more efficient to generate a large table ($N=150$) of R_{2}, Z_{2} data from Ens. (1a-b) and to use linear interpolation of the table to find the ray intercepts. The latter procedure is explained in the following discussion of ray tracing the inner channel of the WS/LSM Telescope.

Assume an incident ray with direction cosines

$$
\begin{equation*}
A_{0}=-\sin \alpha \hat{i}-\cos \alpha \hat{k} \tag{2}
\end{equation*}
$$

strikes the entrance pupil at the point $\left(X_{0}, Y_{0}, Z_{0}\right)$.

The entrance pupil is a plane normal to optical axis located at $Z_{0}=60.5$ inches where the origin of the coordinate system is located at the focal point of the WS telescope. Polar coordinates are used to specify the points (X_{0}, Y_{o}) on the entrance pupil such that each ray passes thru an equal area.

From the transfer ray trace equations, the intercepts on the $W S$ secondary mirror, which acts like the primary for the inner channel, are obtained by solving for β and φ_{2} :

$$
\begin{equation*}
R_{2} \cos \varphi_{2}=x_{0}+\left(z_{2}-z_{0}\right) \tan \alpha \tag{3a}
\end{equation*}
$$

$$
\begin{equation*}
R_{2} \sin \varphi_{2}=Y_{0} \tag{3b}
\end{equation*}
$$

where R_{2} and Z_{2} are given by Eqs. (1a-b). The resulting nonlinear equations (3a-b) are difficult to solve in the present form. As an alternative approach, a linear interpolation technique has been developed. First, construct a table of data $R_{2}(I), Z_{2}$ (I) for $I=1,---N$ from Eqs. (1a-b) for β within the interval [7.057309, 7.417018]. The interval containing a valid solution to

Eqs. (3a-b) must satisfy

$$
F(I) \quad F(I-1) \leq 0,
$$

where

$$
\begin{equation*}
F(I)=R_{2}^{2}(I)-\left\{\left[x_{0}+\left(z_{2}(I)-z_{0}\right) \tan \alpha\right]^{2}+Y_{0}^{2}\right\} \tag{Ha}
\end{equation*}
$$

When the specific interval containing a solution to Eq. ($3 \mathrm{a}-\mathrm{b}$) is identified, then $\mathrm{R}_{2}, \mathrm{Z}_{2}$ are obtained by linear interpolation

$$
\begin{align*}
& R_{2}=R_{2}(I-1)-F(I-1) \frac{\left[R_{2}(I)-R_{2}(I-1)\right]}{[F(I)-F(I-1)]} \tag{Fa}\\
& z_{2}=Z_{2}(I-1)-F(I-1) \frac{\left[Z_{2}(I)-Z_{2}(I-1)\right]}{[F(I)-F(I-1)]} \tag{Sb}
\end{align*}
$$

where the fact that $F(I)$ is equal to zero for the valid solutions R_{2}, Z_{2}.

$$
\text { The incident ray is reflected at the point } R_{2}, Z_{2}
$$

$$
\begin{equation*}
\left.\underset{\sim}{A} A_{1}=A_{0}-2 \underset{\sim}{N}{\underset{\sim}{1}}^{N_{1}} \cdot{\underset{\sim}{0}}\right) \tag{6}
\end{equation*}
$$

where $\underset{\sim}{N_{1}}$ is the unit normal to the surface

$$
\begin{equation*}
\underset{\sim}{N_{1}}=\frac{-\cos \varphi_{2}\left(\frac{d z_{2}}{d R_{2}}\right) \hat{j}-\sin \varphi_{2}\left(\frac{d z_{2}}{d R_{2}}\right) \hat{j}+\hat{k}}{\left[1+\left(\frac{d z_{2}}{d R_{2}}\right)^{2}\right]^{1 / 2}} \tag{ba}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{d z_{2}}{d R_{2}}=\frac{\left(d^{\prime} / \alpha\right)-\tan \beta}{1+\left(d^{\prime} / d\right) \tan \beta} \tag{6b}\\
& d^{\prime}=[d(d) / d \beta] \tag{6c}
\end{align*}
$$

The slope of the surface, $\left(\mathrm{dZ}_{2} / \mathrm{dR}_{2}\right)$, at the point of reflection (R_{2}, Z_{2}) is evaluated by linear interpolation.

The design condition for the LSM mirror is that an axial ray $(\alpha=0)$ incident upon the $W S$ secondary mirror at the intersection point should be reflected by the LSM mirror to form an image along the optical axis at the

Ranicon detector location specified by Z_{I}. The axial intercept z of the axial ray ($\alpha=0$) reflected by the secondary W S mirror near the intersection point is give by

$$
\begin{equation*}
\bar{z}=z_{2}\left(\beta^{*}\right)-R_{2}\left(\beta^{*}\right) \frac{A_{1 z}\left(\beta^{*}\right)}{A_{1 x}\left(\beta^{*}\right)} \tag{7}
\end{equation*}
$$

In the following sections 1 thru 4 equations are given for the design of the LSM mirror when this surface is a convex sphere, concave ellipsoid, convex hyperboloid, or constant optical path aspheric. Also, specific ray trace equations for each L SM surface type are given.

1. Convex Sphere

The equation for the LSM spherical surface is given by

$$
\begin{equation*}
\left(\mathrm{z}_{3}-\mathrm{z}_{03}+\mathrm{R}_{3}\right)^{2}+\mathrm{x}_{3}{ }^{2}+\mathrm{y}_{3}{ }^{2}=\mathrm{R}_{3}{ }^{2} \tag{8}
\end{equation*}
$$

where Z_{03} is the vertex of the surface and R_{3} is the radius of curvature. See Fig. 4. Denoting the object and
 M of the LSM is given by

$$
\begin{equation*}
M=-\frac{v}{u}=\frac{z_{I}-z_{03}}{z_{03}-\bar{z}} \tag{9}
\end{equation*}
$$

Adding and substracting \bar{Z} to the numerator of Eq. (9) and solving for u, v, one obtains

$$
\begin{equation*}
u=\frac{z_{I}-\bar{z}}{M+1} \tag{9a}
\end{equation*}
$$

Noting that $u=Z_{03}-\bar{Z}, E q(9 a)$ yields

$$
\begin{equation*}
z_{03}=\frac{z_{I}+\bar{z} M}{1+M} \tag{10}
\end{equation*}
$$

Solving the paraxial mirror equation,

$$
\frac{1}{u}+\frac{1}{v}=-\frac{2}{R}
$$

for R_{3} gives

$$
\begin{equation*}
R_{3}=\frac{2 M\left(\bar{z}-z_{I}\right)}{M^{2}-1} \tag{11}
\end{equation*}
$$

Numerical values for Z_{03} and R_{3} with $\mathrm{Z}_{\mathrm{I}}=60.5 \mathrm{in}$. and several magnifications are given below

M	$-R_{3}(\mathrm{in})$	$z_{03}(\mathrm{in})$
2	58.388	$3 / .30$
5	18.240	24.0
8	11.120	21.57

Transfer to the spherical surface is achieved by using standard ray tracing results ${ }^{6}$:

$$
\begin{align*}
& x_{3 T}=x_{2}+\left(z_{03}-z_{2}\right) A_{2 x} / A_{2 z} \tag{12a}\\
& Y_{3 T}=y_{2}+\left(z_{03}-z_{2}\right) A_{2 y} / A_{2 z} \tag{12b}\\
& x_{3}=x_{3 T}+D A_{2 x} \tag{12c}\\
& Y_{3}=Y_{3 T}+D A_{2 y} \tag{12d}\\
& z_{3}=z_{03}+D A_{2 z} \tag{12e}
\end{align*}
$$

where

$$
\begin{aligned}
& C D^{2}-2 D B+H=0 \\
& B=A_{2 z}-C\left(X_{3 T} A_{2 x}+Y_{3 T} A_{2 y}\right) \\
& H=C\left(x_{3 T}^{2}+Y_{3 T}^{2}\right) \\
& D=\left\{B-\left[B^{2}-C H\right]^{1 / 2}\right\} \\
& C=1 / R_{3}
\end{aligned}
$$

The direction cosines of the reflected ray at the LSM mirror are given by

$$
\begin{equation*}
\underset{\sim}{A_{3}}={\underset{\sim}{2}}^{A_{2}}{\underset{\sim}{N}}^{\left(A_{2} \cdot N_{3}\right)} \tag{13}
\end{equation*}
$$

where

$$
N_{N}=\frac{-\cos \varphi_{3}\left(\frac{d z_{3}}{d R_{3}}\right) \hat{i}-\sin \varphi_{3}\left(\frac{d z_{3}}{d R_{3}}\right) \hat{j}+\hat{k}}{\left[1+\left(\frac{d z_{3}}{d R_{3}}\right)^{2}\right]^{1 / 2}}
$$

The transfer equations to the image plane are given by

$$
\begin{align*}
& x_{4}=x_{3}+\left(z_{4}-z_{3}\right) A_{3 x} / A_{3 z} \tag{14a}\\
& y_{4}=y_{3}+\left(z_{4}-z_{3}\right) A_{3 y} / A_{3} z \tag{14b}
\end{align*}
$$

The RMS blur circle radius on the image plane is computed from the ray intercepts $\left(X_{4}, Y_{4}\right)$, using conventional techniques. ${ }^{8}$
2. Concave Ellipsoid

The equation for the LSM ellipsoid surface is given by

$$
\begin{equation*}
\frac{\left(z_{3}-z_{I}-C_{E}\right)^{2}}{A_{E}^{2}}+\frac{R_{3}^{2}}{B_{E}^{2}}=1 \tag{15}
\end{equation*}
$$

where the ellipsoid constants are determined by requiring
one foci to be at \bar{Z} and the other foci to be at Z_{I}, along the optical axis. In terms of the magnification given by Eq. (9), one has

$$
\begin{align*}
& A_{E}=C_{E}(1+M) /(M-1) \tag{15a}\\
& B_{E}^{2}=A_{E}^{2}-C_{E}^{2} \tag{15b}\\
& C_{E}=\frac{1}{2}\left(Z_{I}-\bar{z}\right) . \tag{15c}
\end{align*}
$$

Numerical values for the ellipsoid coefficients for $Z_{I}=$ 60.5 in. and several magnifications are given below

M	$A_{E}($ in $)$	$B_{E}($ in $)$	$C_{E}($ in $)$
2	65.68	61.92	21.89
5	32.84	24.48	21.89
8	28.15	17.69	21.89

The transfer ray trace equations field the following results for intercepts with the LSM ellipsoid mirror-

$$
\begin{align*}
& c_{2} x_{3}^{2}+c_{1} x_{3}+c_{0}=0 \tag{16a}\\
& y_{3}=y_{2}+\left(x_{3}-x_{2}\right) A_{2 y} / A_{2 x} \tag{16b}\\
& z_{3}=z_{2}+\left(x_{3}-x_{2}\right) A_{2 x} / A_{2 x} \tag{16c}
\end{align*}
$$

where

$$
\begin{aligned}
C_{0}= & {\left[x_{2} A_{2 z}+\left(z_{I}+C_{E}-z_{2}\right) A_{2 x}\right]^{2} } \\
& -\left(A_{E} / B_{E}\right)^{2}\left[B_{E}^{2} A_{2 x}^{2}-\left(x_{2} A_{2 y}-y_{2} A_{2 x}\right)^{2}\right] \\
C_{1}= & -2 x_{2} A_{2 z}^{2}-2 A_{2 x} A_{2 z}\left(z_{I}+C_{E}-z_{2}\right) \\
& +\left(A_{E} / B_{E}\right)^{2}\left(-2 x_{2} A_{2 y}^{2}+2 y_{2} A_{2 x} A_{2 y}\right) \\
C_{2}= & A_{2 z}^{2}+\left(A_{E} / B_{E}\right)^{2}\left(A_{2 x}^{2}+A_{2 y}^{2}\right)
\end{aligned}
$$

Equations (13-14a,b) are applied for reflection and transfer to the image plane.
3. Convex Hyperboloid

The equation for the LSM hyperboloid surface is given
by

$$
\begin{equation*}
\frac{\left(z_{3}-z_{I}-C_{H}\right)^{2}}{A_{H}^{2}}-\frac{R_{3}^{2}}{B_{H}^{2}}=1 \tag{17}
\end{equation*}
$$

where the hyperboloid constants are determined by requiring one foci to be at \bar{Z} and the other foci to be at Z_{I}, along the optical axis. In terms of the magnification given by Eq. (9), one has

$$
\begin{align*}
& A_{H}=C_{H}(M-1) /(M+1) \tag{17a}\\
& B_{H}^{2}=C_{H}^{2}-A_{H}^{2} \tag{17b}\\
& C_{H}=\left(z_{I}-\bar{z}\right) / 2 \tag{17c}
\end{align*}
$$

Numerical values for the hyperboloid coefficients for Z_{I} $=60.5$ in. and for several magnifications are given below

M	$A_{H}($ in $)$	$B_{H}(i n)$	$C_{H}(i n)$
2	7.2985	20.643	21.895
5	14.5970	16.32	21.895
8	17.02	13.762	21.895

The transfer ray trace equations yield the following
results for the intercepts with the LSM hyperboloid mirror

$$
\begin{align*}
& D_{2} x_{3}^{2}+D_{1} x_{3}+D_{0}=0 \tag{18a}\\
& y_{3}=y_{2}+\left(x_{3}-x_{2}\right) A_{2 y} / A_{2} x \tag{18b}\\
& z_{3}=z_{I}+C_{H}-A_{H}\left[1+\frac{\left(x_{3}^{2}+y_{3}^{2}\right)}{B_{H}^{2}}\right]^{1 / 2} \tag{18c}
\end{align*}
$$

where

$$
\begin{aligned}
D_{0}= & {\left[x_{2} A_{2 z}-\left(z_{2}-z_{x}-C_{H}\right) A_{2 x}\right]^{2} } \\
& -\left(A_{H} / B_{H}\right)^{2}\left[B_{H}^{2} A_{2 x}^{2}+\left(x_{2} A_{2 y}-y_{2} A_{2 x}\right)^{2}\right] \\
D_{1}= & 2 x_{2} A_{2 z}^{2}+2 A_{2 x} A_{2 z}\left(z_{2}-z_{I}-C_{H}\right) \\
& +\left(A_{H} / B_{H}\right)^{2}\left(-2 A_{2 x} A_{2 y} y_{2}+2 x_{2} A_{2 y}^{2}\right) \\
D_{2}= & A_{2 z}^{2}-\left(A_{H} / B_{H}\right)^{2}\left(A_{2 x}^{2}+A_{2 y}^{2}\right) .
\end{aligned}
$$

Equations (13-14a,b) are applied for reflection and transfer to the image plane.
4. General Aspheric with Constant Optical Path Length

The equation for the constant optical path length (OPL) LSM aspheric surface is obtained by requiring. for axial rays $(\alpha=0)$ the $O P L$ to be constant for all rays passing thru the entrance pupil ($Z_{0}=60.5$ in) and imaging at the focal point ($0, \mathrm{Z}_{\mathrm{I}}$). From Fig. 4 for an arbitrary ray in the entrance pupil, the $O P L$ is given by

$$
\begin{align*}
O P L= & z_{0}-z_{2}+\left[\left(z_{3}-z_{2}\right)^{2}+\left(R_{3}-R_{2}\right)^{2}\right]^{1 / 2} \tag{19}\\
& +\left[\left(z_{3}-z_{1}\right)^{2}+R_{3}^{2}\right]^{1 / 2}
\end{align*}
$$

The LSM surface coodinates X_{3}, Z_{3} are also constrained to satisfy the transfer ray tracing equation

$$
\begin{equation*}
R_{3}=\left(z_{3}-\bar{z}\right) A_{2 R} / A_{2 z} \tag{20}
\end{equation*}
$$

where $A_{2 R}$ is the R component of ${\underset{\sim}{A}}_{2}$ Eliminating R_{3} between Eqs.(19-20) gives

$$
\begin{equation*}
A_{3} z_{3}^{2}+B_{3} z_{3}+C_{3}=0 \tag{21}
\end{equation*}
$$

where $A_{3}=1+\sigma^{2}-b^{2}$

$$
\begin{aligned}
& B_{3}=2 z_{I}-2 \sigma^{2} \bar{z}^{2}-2 b c \\
& C_{3}=z_{I}^{2}+5^{2} \bar{z}^{2}-c^{2}
\end{aligned}
$$

$$
a=0 p L-z_{0}+z_{2}
$$

$$
\begin{aligned}
& b=\left(2 z_{1}+2 z_{2}+25 R_{2}\right) /(2 a) \\
& c=\left(a^{2}+z_{1}^{2}-z_{2}^{2}-25 \bar{z} R_{2}-R_{2}^{2}\right) /(2 a)
\end{aligned}
$$

The valid solution to Eq. (21) is given by

$$
\begin{equation*}
z_{3}=\frac{-B_{3}-\left(B_{3}^{2}-4 A_{3} C_{3}\right)^{1 / 2}}{2 A_{3}} \tag{22}
\end{equation*}
$$

Equations (20) and (22) are parametric surface equations for the constant OPL LSM aspheric surface. A cubic spline polynomial representation for the aspheric surface is presented in Section B.

For off axis rays $(\alpha \neq 0)$, the intercepts on the aspheric LSM surface are obtained by solving the transfer ray trace equations

$$
\begin{align*}
& x_{3}=x_{2}+\left(z_{3}-z_{2}\right) A_{2 x} / A_{2 z} \tag{23a}\\
& y_{3}=y_{2}+\left(z_{3}-z_{2}\right) A_{2 y} / A_{2 z} \tag{23b}
\end{align*}
$$

where $\left(X_{3}, Y_{3}, Z_{3}\right)$ must satisfy Eq (20), (22). Equations (20), (22), and (23a-b) have been solved by a linear interpolation technique. First, construct a table of data $R_{3}(I), Z_{3}$ (I) for $I=1, \cdots, N$ from ERs. (20), (22) for the full aperture. Then the interval containing a valid solution to Eqs. (23a-b) must satisfy

$$
\begin{equation*}
G(I) \quad G(I-1) \leq 0 \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
G(I)= & R_{3}^{2}(I)-\left\{\left[x_{2}+\left(z_{3}(I)-z_{2}\right)\left(A_{2 x} / A_{2 z}\right)\right]^{2}\right. \\
& \left.+\left[y_{2}+\left(z_{3}(I)-z_{2}\right)\left(A_{2 y} / A_{2 z}\right)\right]^{2}\right\}
\end{aligned}
$$

When the specific interval containing a solution to ERs. (23a-b) is identified, then Z_{3} is obtained by linear interpolation

$$
\begin{equation*}
z_{3}=z_{3}(I-1)-G(I-1) \frac{\left[z_{3}(I)-z_{3}(I-1)\right]}{[G(I)-G(I-1)]} \tag{25}
\end{equation*}
$$

Now X_{3} and Y_{3} are computed from Ens. (23a-b).
Equations (13-14a-b) are applied for reflection and transfer to the image plane where the slope ($\mathrm{dZ} Z_{3} / d R_{3}$) of the constant $O P L$ aspheric is computed the condition

$$
\begin{equation*}
\frac{d O P L}{d R_{3}}=0 \tag{26}
\end{equation*}
$$

which can be rewritten using Eq. (19).

$$
\begin{equation*}
\frac{d z_{3}}{d R_{3}}=\frac{\left(R_{2}-R_{3}\right) s-R_{3} T}{\left(z_{3}-z_{2}\right) s+\left(z_{3}-z_{1}\right) T} \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
& S=\left[\left(z_{3}-z_{2}\right)^{2}+\left(R_{3}-R_{2}\right)^{2}\right]^{-1 / 2} \\
& T=\left[\left(z_{3}-z_{I}\right)^{2}+R_{3}^{2}\right]^{-1 / 2}
\end{aligned}
$$

B. Cubic Spline Representation for the LSM Constant Optical Path Length Mirror of the Stanford/MSFC Dual Path X-ray Telescope

To facilitate fabrication of the constant OPL LSM aspheric mirror, a cubic spline polynomial function has been fit to the numerical data generated from Ens. (20) and (22), using a least squared fitting subroutine ICSFKU ${ }^{9}$. In order to fit a set of N data points (Z_{I}, R_{I}) with a cubic spline polynomial, one first divides the domain of independent variables, Z_{I}, into $N K-1$ subintervals. The end points for each subinterval is given by an array $Z K(I), I=1,2$, NK. Then, the cubic spline polynomial between the end points $Z K(I)$ and $Z K(I-1)$ is given by

$$
\begin{align*}
R_{3}\left(z_{3 i}\right)= & c(x, 3)\left[z_{3 i}-z K(I)\right]^{2}+c(I, 2)\left[z_{3 i}-z K(I)\right]^{2} \\
& +c(x, 1)\left[z_{3 i}-z K(I)\right]+Y(I) \tag{28}
\end{align*}
$$

where the coefficients $C(I, J), Z K(K)$, and $Y(I)$ with $J=$ $1,2,3, I=1,2,---N K-1$, and $K=1,2,---$, NK. are determined by the subroutine ICSFKU 9 and $Z_{3 i}$ belongs to the $I^{\text {th }}$ subinterval. For one hundred fifty ($N=150$) data points and twenty subintervals ($N K=21$), the lasted error obtained in fitting the data with the cubic spline polynomial is of the order of 10^{-13}. Tables 2,3 and 4 present the cubic spline coefficients for LSM aspheric surface for magnifications $M=2,5,8$, respectively.
III. RESULTS

In Chapter II, all equations for ray tracing the inner channel of the Dual Path X-ray Telescope were presented for cases when the LSM mirror was a convex sphere, concave ellipsoid, convex hyperboloid or a constant OPL aspheric. Section 1 will present the RMS spot radius analysis of the inner channel for $M=2,5,8 x$, the spread in the angle of

Abstract

incidence over the LSM optic and a vignetting analysis of the primary beam by the LSM optic. Section 2 will present a recommended final configuration of the LSM optic.

1. RMS Blur Circle Radius Analysis and Geometrical Properties of LSM 0ptic

Before presenting the RMS blur circle radius results for the inner channel of the Dual Path X-ray Telescope, it is useful to discuss the imaging properties of the WS secondary mirror when illuminated directly by axial rays. For axially incident light, the W secondary mirror is a poorly imaging element with a focal length of 34 inches. (The focal length is defined as the distance along a ray from the W i intersection point to the optical axis.) For three regions of the $W S$ secondary mirror (WS intersection point, average $W S$ secondary radius and minimum radius), rays have been traced to compute the axial intercept \bar{Z} and the location of the meridional caustic points $\left(X_{2 c}, Z_{2 c}\right.$). 10-11 This data is given in Table 5. From the rotational symmetry of the W secondary mirror, rays from a ring an equal distance from the optical axis will be imaged at \bar{Z}. Such an image is known as the saggital caustic. ${ }^{10-11}$ The length of the saggital caustic is equal to the spherical aberration of the system. - Thus,
the WS secondary has a large spherical aberration of 3.66 inches. As a result of this imaging defect, the meridional caustic $\left(X_{2 c}, Z_{2 c}\right)$, which is the loci of image points contained within the meridional plane ($x-z$), is spread out over very large distances. It is interesting to note that both the meridional and saggital caustic surfaces for a paraboloid degenerate to a point at the focus. Thus, the design assumption used for the inner chanel of the dual path x-ray telescope-is not-satisfied. .for the ..spherical, ellipsoid, or hyperboloid LSM mirror, and poor RMS blur circule results should be expected in these cases.

Figures 5, 6, and 7 present the RMS blur circle radius as a function of field angles for the inner channel of the dual path X-ray telescope over the image plane locatd at the front stop of the WS telescope $Z_{I}=60.5$ in.), when the convex sphere, concaved ellipsoid, and convex hyperboloid surfaces are used for the LSM mirror. In all cases, the $R M S$ blur circle radii are too large for these systems to be used for imaging purposes. This behavior results from the large spherical aberration of the WS secondary mirror. In order to overcome the imaging defect of the inner channel of the dual path x-ray telescope an aspheric surface must be used for the LSM mirror. Initially, one may consider the LSM aspheric mirror could

```
be designed by
```

(1) Abbe Sine Condition, which for collimated rays from infinity requires for all rays in the entrance pupil

$$
\mathrm{h} / \sin \theta=\text { constant }
$$

where h is the height of ray in this entrance pupil and θ is the angle ray makes with the optical axis at the image plane.
(2) Constant optical path length condition for all rays in the entrance pupil.

Referring to Fig. 4, one notes that rays with small h in the entrance pupil are incident upon the image plane with larger θ. Thus, the Abbe Sine Condition will inherently be violated by the inner channel of the dual path x-ray telescope. However, the constant OPL condition can be used to design on LSM aspheric optical element with zero spherical aberration. For the latter aspheric LSM the on axis resolution will be good but off axis resolution will deteriorate quickly due to coma and other aberrations.

Figures 8 and 9 present the RMS blur circle radius for the constant $O P L$ aspheric $L S M$ mirror over an image plane located at the front $\left(Z_{I}=60.5\right.$ in) and the back $\left(Z_{I}=\right.$ 41.3 in) of the WS telescope. One notes that the RMS over the image plane located closer to the LSM element is
approximately 10% smaller than for the image plane located at the front of the $W S$ telescope. Also, the RMS blur circle radius is equal to zero for $\alpha=0$ as a result of the constant $0 P L$ design condition. However, the RMS rapidly increases for off axis rays, since the inner channel of the dual path x-ray telescope does not obey the Abbe Sine Condition. After consultation with MSFC Principal Investigator, all further analysis of the inner channel of the dual path x-ray telescope has been restricted to considering the constant $O P L$ LSM mirror with the image plane located at the front $\left(Z_{I}=60.5\right.$ in) of the WS telescope. Figure 10 presents an expanded view of Fig. 8 for field angles from 0 to 20 arc minutes.

In order to evaluate the imaging properties of the inner channel of the dual path x-ray telescope and the Ranicon detector (50 micron $=2 \mathrm{mil}(.002$ in) pixel and 25 $m m=1$ inch square area), it is useful to know the effective focal length of the system:

M	$f_{\text {Total }}(\mathrm{in})$
2	68
5	170
8	272

The angular half widths of the detector in the entrance pupil for $M=2,5,8$ are given by

M	$0.5 \mathrm{in} / f_{\text {Total }}(\operatorname{arc}-\min)$
2	26
5	10
6	

These results give a first order optics approximation for the field of view of the dual path x-ray telescope system. Since the angles of incidence of rays on the WS secondary are very large, paraxial optics is not very accurate for predicting optical behavior of the dual path x-ray optical system. Figure 11 presents the average coordinate of the blur circle on the image plane as a function of field of view. By comparing Figs. 10 and 11 , it is clear that in none of the cases considered will the off axis resolution be very good, since the RMS blur circle radii are larger than the average image position. The higher magnification case spreads out the average image position more. However, it is known for glancing incident system that the RMS over estimates actual resolution by a factor of 2 to $3 .{ }^{12}$ But, for the present hybrid telescope, it is not clear what is the relationship between $R M S$ blur circle radii and measured
resolution. In order to more accurately predict measured resolution for the dual path x-ray telescope, the FWHM of line spread function should be evaluated. From Figs. 10 and 11 , one may estimate the $M=8 x$ system to have a maximum field of view of 10 to 15 arc-min with a resolution of a few arc minutes.

Besides the resolution of the inner channel of the dual path x-ray telescope, there are several geometrical properties of the LSM optic which are of interest. The following data gives the maximum and minimum angles of incidence, measured with respect to the LSM normal for field of view angles from 0 to 20 arc minutes

M	$\phi_{\text {min }}(\mathrm{nad})$	$\phi_{\text {MAx }}(\mathrm{nad})$
2	0.13524	0.15582
5	0.10735	0.1253
8	0.10034	0.11767

This information will be useful in fabrication of the LSM mirror in controlling the layer spacings. Another important geometrical property of the. LSM optic is the possible vignetting of the primary $W S$ beam by the LSM. The following data describes the minimum radius of the primary
beam $R_{P B}$, at the location of the LSM for a full field of view of 20 arc minutes and the maximum radius of LSM optic, $R_{\text {3 max }}-$

M	$R_{P B}(i n)$	$R_{3 M A x}(i n)$
2	37612	3.4614
5	2.812	2.0704
8	2.4958	1.6071

Since in all cases $R_{3 \max }$ is less than $R_{P B}$, there is no vignetting of the primary beam by the LSM optic in the present configuration.

2. Recommended Final Configuration of LSM Optic

Based on the results presented in Figs. 5-9, it is clear that only the constant OPL LSM configuration will form a useful system. From Fig. 11 it follows that the larger magnification, ie., $M=8$, spreads out the image on the detector more than smaller M. However, to determine a realistic increase of resolution, the FWHM of the line spread function should be evaluated before fabricating the constant $0 P L$ LSM mirror. Table 4 presents the cubic -spline
representation for the $M=8$ case.
IV. CONCLUSIONS

Although the collecting area of the Stanford/MSFC WS Telescope is increased by approximately 29 sq. in., the off axis RMS blur circle radii for the constant OPL LSM mirror are very large. Before proceeding with the fabrication of a constant OPL LSM element for the dual Path x-ray telescope, the FWHM of the line spread function should be analyzed for the inner channel to determine if the system will perform at an acceptable level of resolution. Otherwise, an LSM element could be placed near the primary focus of the $W S$ Telescope to magnify the primary image.

REFERENCES

1. H. Wolter, Ann. Phys. 10 94(.1952).
2. J.H. Underwood, Am. Scientist 66.4, 476 (1978).
3. J.M. Davis, A.S. Krieger, J.K. Silk, R.C. Chase, Proc. SPIE 184, 96 (1979).
4. R. B. Hoover, Three Mirror Clancing Incidence System for X-Ray Telescope, US Patent Office, No. 3821556 (1974).
5. J.W. Foreman, and J.M. Cardone, Design and Mathematical Analysis of a Three Mirror X-Ray Telescope Based on ATM-S056 X-Ray Telescope Hardware, Final Report under contract NA 58-2730, Marshall Space Flight Center, Huntsville, Ala. (1973).
6. Optical Design: Military Standardization Handbook, \#MIL-HDBK-141, US Government Printing Office, Washington, DC (1962).
7. R.C. Chase, L.P. Van Speybroech, Applied Optics 12.5, 1042 (1973).
8. R. J. Gagnon, JOSA 58 (1968).
9. International Mathematics and Statistical Libraries, Edition 6, Houston, Texas (1979).
10. David L. Shealy, Applied Optics 15.10, 2588 (1976).
11. Donald G. Burkhard, David L. Shealy, APPLIED OPTICS, 20.5 897 (1981).
12. David L. Shealy, "Analysis of NOAA-MSFC GOES X-ray Telescope," Final Report submitted to George C. Marshall Space Flight Center, Order No H-34373 B, August 24, 1979.

Fig. 1. Wolter I X-Ray Telescope Configuration,

-て६-

Fig. 2. Cross sectional diagram of a threa

Fig. 3. Dual Path X-Ray Telescope.

Fig. 4. Dual Path X-ray Telescope with Convex Spherical

Figure 5
RMS Blur Circle Radius versus Field Angle for Spherical LSM Mirror.

Figure 6
RMS Blur Circle Radius versus Field for Ellipsoid LSM Mirror.

Figure 7
RMS Blur Circle Radius versus Field Angle for Hyperboloid LSM Mirror.

Figure 8
RMS Blur Circle Radius versus Field Angle for Constant Optical Path Length Aspherical LSM Mirror.

Figure 9

RMS Blur Circle Radius versus Field Angle for Constant Optical Path Length Aspherical LSM Mirror.

-41-

Table 1

NUMERICAL DATA
FOR THE INTERNAL SECONDARY MIRROR SURFACE OF THE STANFORD/MSEC TELESCOPE

B	$\mathrm{R}_{2}(\mathrm{in}$)	Z_{2} (in)
7.057309	6.190	50.0
7.090010	6.106241	49.09362
7.126344	6.015758	48.1170
7.162678	5.928081	47.17269
7.199013	5.843122	46.25948
7. 235347	5.760772	45.37606
7. 271681	5.680920	44.52110
7.308015	5. 603459	43.69334
7.344350	5.528286	42.89158
7. 380684	5. 455301	42.11465
7. 417018	5.384410	41.36147

CUBIC SPLINE COEFFICIENTS FOR LSM ASPHERIC WITH $M=2 x$ ．

K	$R_{3}(K)$	$Z_{3}(K)$
1	0．346137D 01	0．312755D 02
2	0．342844D 01	0． 312766 D 02
3	0．339033D 01	0．312780D 02
4	0．335255D 01	0．312794D 02
5	0．331509D 01	0．312807D 02
6	0．327793D 01	0．312821D 02
7	0．324109D 01	0．312835D 02
8	0．320454D 01	0．312849D 02
9	0．31682ED 01	0．312863D 02
10	0．313230D 01	0．312878D 02
11	0．309661D 01	0．312892D 02
12	0.306119 D 01	0． 312906002
13	0．302605D 01	C．312921D 02
14	0.299118 D O1	0．312935D 02
15	0.295658001	0． 312950002
16	0．292227D 01	－．312964D 02
17	0．2egeezd 01	－．312979D 02
18	0．285452D 01	0．312994D 02
19	0．282110D 01	0．313008D 02
20	0．278813D 01	0．313023D 02
21	0．271475D 01	0.313056 D 02

I	$y(I)$	$C(I, 1)$	$C(1,2)$	$C(1,3)$
1	0．34＇6137D 01	－0．285795D 02	0．1648590 03	－0．170237D 04
2	0． 342844 D 01	－0．282039D 02	0． 158935003	－0．159612D 04
3	0．339033D 01	－0．277801D 02	0． 152416003	－0． 149331004
4	0．3352550 01	－0．273708D 02	0．146278D 03	－0．140049D 04
5	0．331509D 01	－0．269754D 02	O．140485D 03	－0．131456D 04
6	0．327793D 01	－0．265933D 02	O． 135015 D 03	$-0.123573 D 04$
7	0．324109D 01	－0．262237D 02	0．129842D 03	－0． 116305 D 04
8	0．320454D 01	－0． 258661002	0．124945D 03	$\begin{aligned} & -0.1096690 \\ & -0.1033820 \\ & -04 \end{aligned}$
9	0． 316828001	－0．255200D 02	O．120302D 03	$\begin{aligned} & -0.103382004 \\ & -0.981378003 \end{aligned}$
10	0． 313230001	－0．2518480 02	O． 115901 D 03	$\begin{aligned} & -0.981378003 \\ & -0.920304003 \end{aligned}$
11	0．309661D 01	－0．248601D 02	O． 111701 D 03	$-0.894700 \mathrm{D} 03$
12	0． 306119001	-0.2454550 -0.2424060 02	o．107742D 03 o．103875D 03	-0.808125003
13	0．302605D 01 0.2991180 01	$-0.242406 D ~$ -0.2394500 -0.23	o．103875D 03 0． 100367 D 03	－0．808125D ${ }^{-0.8592060}$
15	0．295658D 01	－0．236587D 02	0．966197D 02	－0．664681D 03
16	0．29コこ27D 01	－0．2338100 02	0． 937108 D 02	－0． 9316210
17	0．28882こD 01	－0．231125D 02	0．8961700 02	$\begin{aligned} & -0.435693003 \\ & -0.123313009 \end{aligned}$
18	O． 285452 D 01	－0．228525D 02	O．877002D 02	－0．136200D 03
19	0．282110D 01	－0．226026D 02	$0.822605 D ~ 02 ~$ 0.8166110	$\text { -0. 2021300 } 04$
20	0． 278813001	－0．223621D 02	0．816611D 02	－0．coeluod 0

CUBIC SPLINE COEFFICIENTS For LSM ASPHERIC WITH $M=5 x$.

TABLE 4
CUBIC SPLINE COEFFICIENTS FOR LSM ASPHERIC WITH $M=8 x$ ．

K	$23(1<)$	$\mathrm{L}_{3}(K)$
1	0.160705001	0．215202D 02
2	0． 157611 D 01	－．2152250 02
3	0．154028D 01	0． 215252 D 0 2
4	0．150471D 01	－．215278D 02
5	0．146．542D 01	0．215304D O2
6	0．14343eD 01	0．215331D 02
7	0．138950D 01	0．215357D 02
8	0．12 1308 C 01	0．215383D 02
9	0．133080D 01	0．2154090 02
10	O．129677D 01	0． 2154350 O2
11	0．126299D 01	0．21546：D 02
12	0．1225459 01	0．215407D 02
13	0．1196150 01	－．215513D O2
14	0.116311 D 01	0．215538D 02
15	0．113031D 01	－215564D 02
16	0．108779D 01	O． 215590002
17	0．10t551501	－．215615D Oこ
18	0．10こ36CD 01	0．215640D 02
19	0．1001920 01	0．215666D 02
20	0.970984000	0． 215690 D 02
21	0．9045350 00	O． 215743 D 02

I	Y（1）	$C(I, 1)$	$C(I, 2)$	$C(1,3)$
1	0． 160705001	－0．136145D 02	0．125576D 02	－0．142932D 02
2	0．157611D O1	－0． 135576 D 02	O．124600D 02	－0．144416D 02
3	0．15402ED 01	－0． 134918 D O2	O．123452D O2	－0．146088D 02
4	0．150．471D O1	－0．1342690 02	0．122อ94D 02	－0．147463D 02
5	0． 146942 D 01	－0．1336280 02	O．12112BD O2	－0．1489710 0己
6	0．143438D 01	－0． 132994 D 02	O． 119754 D O2	－0． 1502700 Of
7	0．139960D 01	－0． 132368 D O2	0．118772D O2	－0．1517710 03
8	0．136508D 01	－0． 131750 D 02	0．117581D 02	－0．153598D 02
9	O． 133080 D 01	－0． 131140 D 02	0．116380D O2	－0．154466D 02
10	0．129677D 01	－0．130538D 02	O． 1151750 O2	－0．159732D O2
11	0．1262990 01	－0．129944D 02	0．1139320 02	－0．154974D 02
12	0．122945D 01	－0． 129357 D 02	O．112729D 02	－0．176746D 02
13	0． 119615001	－0．128779D 02	O．1113610 02	－0．1433170 02
14	0．116311D 01	－0．128209D 02	0．110255D 02	－0．229937D 02
15	0．113031D 01.	－0．127649D 02	0．1084870 02	－0．909822D 01
16	0．109779D 01	－0．127096D 02	O．107790D 02	－0．380983D 02
17	O． 106551 D 01	－0．126555D 02	0．104881D 02	－0．519344D 01.
18	0．103360D 01	－0．126024D 02	0．105275D 02	－0．769135D 02．
19	0．1001980 01	－0．1255090 02	0．994732D 01	0． 276990 O 02
20	0.970824 D 00	－0．1250100 02	0．101536D O2	－0．1859750 03.

Table 5

WS SECONDARY MIRROR IMAGING DATA All units are inches

R_{2}	z_{2}	$\overline{\mathbf{z}}$	$\mathrm{X}_{2 \mathrm{c}}$	$\mathrm{z}_{2 \mathrm{c}}$
6.188	49.984	16.709	-2. 53	3.10
5.755	45.318	14.750	-35.53	-103.9
5.386	41.385	13.049	-31.01	-150.03

