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ABSTRACT

A ray tracing analysis has ©been performed for
several configurations for the inner channel of the
dual path x-ray telescope, which is proposed +to |use
the secondary . mirror of the Stanford/MSFC
Wolter-Schwarzschild telescope and a normal incident
layered synthetic microstructure (LSM) mirror to form
a secondary image near the front of +the telescope.
The LSM mirror shapes <considered were sphericeal,
ellipsoid, hyperboloid and constant optical path
length (OPL) aspheric. Only for the constant OPL case
gave good axial resolution. All cases had poor off
axis resalution as judged by the RMS blur circle

radius.



I. INTRODUCTION

During the past twenty years, the Wolter I
Telescope1 has been the most common telescope
configuration used in x-ray astronomy. An interesting
summary of work in the field thru 1978 is given in
Ref. 2. The Wolter I telescope 1is &a confocal
paraboloid and hyperboloid operating at small glancing
incidence angles as shown -in Fig. 1. Normally, an
aperture stop Dblocks 1light from directly hitting the
secondary (hyperboloid), and the only mode for ilight
to be imaged on the focal plane is through reflection
from the paraboloid and then the hyperboloid, which
will be termed +the outer channel. A common problem
with all glancing incidence x-ray telescopes is the
small effective <collecting area. A nested x-ray

3

telescope” improves the telescope sensitivity, but

fabrication costs and alignment problems arise.

As a result, Hoover4 has proposed that the
collecting area of a Wolter I x-ray telescope can be
increased by constructing a third mirror such that the
radiation incident upon the second surface

(hyperboloid) of the type I telescope is reflected via



a third mirror to the focal plane in concert with the
radiation incident upon the outer mirror (paraboloid)
of the +type I =x-ray telescope as shown in Fig. 2.

5 have used the Wolter I =x-ray

Foreman and Cardone
telescope as a Dbase system for the design of a three
mirror x-ray telescope. The general result of
Foreman's analysis is that the resolution of the outer
channel is " of the order of arc-seconds, while the

resolution achieved via the inner channel 1is of +the

order of arc-minutes.

The present work is concerned with the
development of a "dual path x-ray telescope” which
permits x-rays that are directly incident wupon the
secondary mirror of the type I telescope (hyperboloid)
to be rTeflected via a normal incident, layered
synthetic microstructure (LSM) mirror located near the
pseudo-focus of the hyperboloid +to a second focal
plane 1located near the structure of +the type I
telescope. See Fig. 3. This effort will design and
analyze the LSM optic that will be utilized to couple
the secondary of a Wolter/ Schwarzschild (WS) x-ray
telescope to a 25 mm Ranicon x-ray detector with 50
micron pixel sigze. The specific tasks to be

accomplished in this study are described in the _"Scope



of Work" given below.

SCOPE OF WORK

1. Generate equations for the internal
secondary element of the Stanford/ MSFC X-ray
Rocket Experiment Mirror by fitting the
aspheric element +to cubic spline function
representations.

2. Develop ray trace equations for the inner
channel of the Dual _Path . _WS/LSM X-ray.——— -

Telescope. This effort will include
considerations of the LSM optic configured as a
convex hyperbdboloid, ellipsoid, sphere or

general aspheric element using constant optical
path conditions.

3. Compute <the RMS Dblur circle radius as a
function of field angle on a flat image plane
and evaluate +the effects of defocusing the
image plane.

4. Calculate the total range of angles over
which the Wolter/LSM system will operate.
Establishment of these angles includes
considerations of <the Ranicon position, LSM
magnification and position and field of view of
the Ranicon. Establish dimensions of the LSM
to insure no vignetting of +the primay bean,
while providing maximum collection of the
secondary beam.

5. In consultation with the MSFC Principal
Investigator, select the final configuration of
the mirror element that will be flown as part
of the Rocket payload. Provide equations of

the surface of the optic and the mirror
parameters that will be required by the optical
house for fabrication of the desired LSM

element.

The specific principles, procedures and equations relating



to the "Scope of Work" items 1 and 2 are given in section
ITI of this report, and the results relating to items 3, 4,

and 5 are given in Section III of this report.

II. MATHEMATICAL ANALYSIS

A. Ray Trace Equations for +the Inner Channel of the

Dual Path WS/LSM X-Ray Telescope

A general discussion of the ray tracing technique is
given in Ref. 6. This report summarizes the equations
used to ray trace the inner channel of the dual path WS/LSM
x-ray telescope. The equations for the surface of the
internal secondary mirror of the Stanford/MSFC WS x-ray

telescope are given by

R, = d sinf : (1a)
Z, =d cosp (1b)

with a ’_'_‘g
ly  _ oS 4 [ /-CosPB f Taw (%)_,
4 f /— cos 4 +?(l+c‘osﬂ)( R ) ]

% = faw (2o)
L = g% = 15 arctan (/)



wvhere f is the axial focal 1length of the WS +telescope,
which is equal to 50 in. for the inner Stanford/MSFC WS
telescope, and T, is the radius at the WS

primary-secondary mirror intersection point, which is equal
to 6.19 in. The surface parameter ﬁ varies from 7.057309
at the intersection point to 7.417018 at the rear of the
telescope. (A?* specifies the intersection point of WS
mirrors.) A discussion of the WS surface equations is-
given in Ref. 7. Tablei 1 presents a sample of the
numerical data for the internal secondary mirror surface
which was computed from Eq.(1a-b). Initially, it was
proposed and was included in ITEM 1 of the SCOPE OF WORK to:
represent the WS secondary by a cubic spline polynomial +to
facilitate ray +tracing. However, it has been found to be
more efficient to generate a large tabdle (N= 150) of R2,

Z, data from Egs. (1a-b) and to use linear interpolation

of the table to find the ray intercepts. The latter

procedure is explained in the following discussion of ray

tracing the inner channel of the WS/LSM Telescope.

Assume an incident ray with direction cosines

A

Ao =—Sl'noll."'CoS°(£ ' (2)
Vad

strikes the entrance pupil at the point (XO,YO,ZO)L



The entrance pupil is &a plane normal +to optical axis
located at Zo = 60.5 inches where +the origin of the
coordinate system is located at the focal point of the WS
telescope. Polar coordinatés are used to specify the
points (xo’Yo) on the entrance pupil such that each ray

passes thru anm equal area.

From the transfer ray trace_equations, the intercepts
on the WS secondary mirror, which acts like the primary for

the inner channel, are obtained by solving for ﬁ and 42:

22 cos(fz =X, + (Z,_"’Z,) tam of (3a)

Ry Sinf, = Y, (3b)

where R, and Z, are given by Egs. (1a-b). The

resulting nonlinear equations (3a-b). are difficult to solve
in the present form. As an alternative approach, a linear
interpolation technique has Dbeen developed. First,

construct a table of data R, (I), Z, (i) for I=1,---, N-

2
from Eqs. (1a-b) for B within the interval [7.057309,

7.417018]. The 4interval containing a valid solution to



Eqs. (3a-b) must satisfy
F(I) F(I'1) iov

where

F (1) =R:(I)‘f[)‘o+ (22(2) = 2,) tam & *+V,” f (4a)

When the specific interval containing a solution to Egs.

(3a-b) is identified, then R YA are obtained by

2’ 2

linear interpolation

[Ry(z) =R2(T-1D]
[Fi) - F(x~1D]

(5a)

R, = Ra(z-1) = F (x=1

[ZG) —2 (2-1)]
[ FE> —F(x=-D]

(5b)

2, = % (1-1)~ F(z-1)

where the fact that F(I) is equal to zero for the valid
solutions R2, Zz.

Z

The incident ray is reflected at the point R2’ >

in the direction



A= A —2M (M- fo) (6)

is the unit normal to the surface

where fb
dZa\ ¢ a
~ ¢cosY, JR2>""S'"% )“ﬁ
M = (6a)

~ [ 1+ (&) ]%

and

dz (44) — B (6b)

e —

Ra 1+ (475 tan B

d/"' [ 01(0()/4/3] (6c).

The slope of the surface, (dzz/dRz), at the point of

reflection (R2, Z2) is evaluated by linear

interpolation.

The design condition for the LSM mirror is that an
axial ray (®{=0) . incident wupon the WS secondary mirror at
the intersection point should be reflected by the LSHM

mirror to form an image along the optical axis at the



Ranicon detector location specified by ZI. The axial
intercept Z of the axial ray (®=0) reflected by the

secondary WS mirror near the intersection point is give by

Az (£*)
2 = % (ﬁ*)— R (%) Aix (%)

(N

In the following sections 1 thru 4 equations are given for
the design of the LSM mirror when this surface is a convex
sphere, concaved ellipsoid, convex hyperboloid, or constant
optical path aspheric. Also, specific ray trace equations

for each LSM surface type are given.

1. Convex Sphere

The equation for the LSM spherical surface is given by

2 2 2 2
(z3 - Zo3 + 113) ‘ - (8)

where 203 is the vertex of the surface and R3 is the

radius of curvature. See Fig. 4. Denoting the object and

image distance by u and v, respectively, the. magnification

M of the LSM is given by

M = T T )]
= -7 Z,, - Z

-10~



Adding and substracting Z to the numerator of Eq. (9) and

solving for u, v, one obtains

= €z -~ £ _ (9a)
M+
M -
—v = 2, —2) (9b)
M+ ( * .
Noting that u = Z03 - 7, Eq (9a) yields
-2-03 = Zz + 2 M | (10)
| + M .

Solving the paraxial mirror equation,

[ [ -~ 2
u + v R
for R3 gives
2M (g"él) (11)
3 M2 -l .
Numerical values for Z03 and R3 with ZI = 60.5 in.
and several magnifications are given below
M - R3 (7") i03 (ih) -
2 §5.358 3/ 30
& 1§. 240 2¢. 0

~11-



Transfer to the spherical surface 1is achieved by using

standard ray tracing resultsG:

X3T = X2 t+ (ios" 22) Az"/Az{

7;1? = )& + (453" Z: ) 14%} /223
Xa = Xar + DAix

~N
w
)

-263 +D A2z

where

cD*-2DB + H =0

B = Az — ¢ ( XarAzx + Var Azy )
H=c¢( Xsf -r-);:)

D= {8-[8-cHI?]

C_:l/,e3

o

The direction cosines of +the reflected ray

mirror are given by

—12-

(12a)

(12b)

(12¢)

(124)

(12e)

LSM



A3 = A2 ‘-2'/1/3 (ﬁz ’,/3{3) : (13)

R
t

—005?3 Jﬁa)' S”‘%(ag )J +’ﬁ

Mo = — %
[ l'f ( JR3 ]

The transfer equations to the image plane are given by

Xa = X3 + (24-323) Asx /4,, (142)

x‘ =Y + (?4."?3>A37’//)32

(14b)

The RMS Ddlur circle radius on the image plane is computed

from the ray intercepts (X4,Y4), using conventional

techniques.8

2. Concave Ellipsoid

The equation for the LSM ellipsoid surface is given by

2
(-23—21 -Ce) R32
- 4 ——
Agz Be

)
T—

(15)

where the ellipsoid constants are determined by requiring

-13-



one foci to be at E.and the other foci to be at 2 along

I’

the optical axis. In terms of the magnification given by

Eq. (9), one has

AE= CE (/*MD//"’”) (15a)

2. 2 2
BE = AE “'CE . (15b)

! ") (15¢)

Numerical values for the ellipsoid coefficients for ZI =

60.5 in. and several magnifications are given below

M Ae (in) Bz (in) Ce(in)
2 65658 &l 72 2/ 87
s | 3284 24 4f 2/.£7
s 2878 1247 2/.87

The  transfer ray trace -equations yield the following

results for intercepts with the LSM ellipsoid mirror .

~14-



CoXs + CiXs + Co =0 a6a)
b =Y, + (Xs—Xx2J Ay /Aex (16b)

2y =8 + (Xs-X Dy (16

where

2
Co = [xg.Az-z. + (22 +CE—'22>/42;< 1

- ('45/35 ) [B82 4.7 - (Xz/lzy — Yy A2’ ]
c, = —2X2Az; ~ 2 A2x A2 (Z; + Ce - 22 )

(A8 Y (~2xa g +2 Vs Fax Py )

Co = AT+ (Aey ¥ (4,2 + Ay D

Equations (13-14a,b) are applied for reflection and

transfer to the image plane.

3. Convex Hyperboloid

The equation for the LSM hyperboloid surface is . given

-15-



by

=/ (17)

where the hyperboloid constants are determined by requiring

one foci to be at E and the other foci to be at ZI’ along

the optical axis. In terms of the magnification given by

Eq. (9), one has

AH = CH (M-—I) /(/14—;-/ ) (17a)
BH:. = de _ A:— (17b)
C, = (2 - 5)/2 (17¢)

Numerical values for the hyperboloid coefficients for 2

I
= 60.5 in. and for several magnifications are given below

M A, (in) B, (in) Cy Cin)
2 2298 20 4 43 2/ . 875
s /#4690 | 16.32 2/, P78
y /e Z /% 7262 2/[.p7¢
The transfer ray trace equations yield the following

-16- -



results for the intercepts with the LSM hyperboloid mirror

A X; + D Xs +D, =0 (18a)
Y3 = Y. + (X3 —X2D A’Y/Azx (18b)
Bz =2 +Cy —An [ 1+ (s +1%2 ]% (18¢)

H

where

2

D o= [ X ha — (22— 22-G) Axx ]
S C A o) [ B AE + (Xa ey = Yo Arx D™

~
I

2,Xz44z: + 2 Azx/422 <}Ez — 2 —Cy )
+ (g, 3 (= 2hax Aoy Yo+ 25 Auy D

Do o= AL - A0 (fad + Ay D

Equations (13-14a,b) are applied for reflection  and

transfer to the image plane.

4. General Aspheric with Constant Optical Path Length

-17-



The equation for the constant optical path 1length
(OPL) LSM aspheric surface is obtained by requiring for
axial rays (o{=0) the OPL to be constant for all rays
passing thru the entrance pupil (Zo = 60.5 in) and
imaging at the focal point (O, ZI). From Fig. 4 for an

arbitrary ray in the entrance pupil, the OPL is given by

2./
OPL = 2, - 22 + [(23—-22)2‘_‘. (Rs._Rz) ]/z' (19)

+[( 23~ 21) +R3 ]/z.

Z., are also constrained

3 73
to satisfy the transfer ray tracing equation

The LSM surface coodinates X

Ry = (23-%D /fx //;,* (20)

where A2R is the R component of A,. Eliminating R

between Eqs.(19-20) gives

3

-18-



b= (22, +22 +2 69:)40

¢ = (az-ﬁ-&z—‘zzz—-zggkz ""Rzz> (14)

The valid solution to Egq. (21) is given by

a l
-8y — (B35 -4 4565 >/2 (22)

2. =
3—-
2 As

Equations (20) and (22) are parametric surface equations
for the constant OPL LSM aspheric surface. A cubic spline
polynomial representation for +the aspheric surface is

presented in Section B.

For off axis rays (ol #0), the intercepts on the
aspheric LSM surface are obtained by solving the transfer

ray trace equations

Xy = X, + (25 —_ 2:.)/42.)( /A:e (232)

s =Ya + (23- 22D AY s (23b)

where (XB,Y3,Z3) must satisfy Egs (20), (22).

Equations (20), (22), and (23a-b) have been solved by a
linear interpolation technique. First, construct a table

of data 33 (1), 2

(20), (22) for the full aperture. Then the interval

5 (1) for 1 =1, ---, N from Egs.

containing a valid solution to Eqgqs. (23a-b) must satisfy

G(I) G6(I-1) < O - (24)

-19- -



where

G0y = Row) - { Lo+ (2502 =20 (M, D]

+ [+ (250 -2>C Ay f, ST ]

When the specific interval containing a solution to Eqgs.
(23a-b) is identified, <then Z3 is obtained by linear

interpolation

[ 2,¢x) - 25 Cz=1)]
LG ()- G (z-1) 1]

(25)

'Z3 = 23 (I—l) - G‘(I“')

Now X3 and Y3 are computed from Egs. (23a-1b).
Equations (13-14a-b) are applied for reflection and
transfer to the image plane where the slope (dZ3/dR3)

of the constant OPL aspheric is computed the condition

d oPL
—_— =0 26
1 R, (26)
which can be rewritten using Eq. (19)
d.zs (Qz—-RB) S - RBT (27)

R (2,255 4 (23~2DT

-20-



where

L 4l
S = [C23—2.)" + (Ra—R) ]

2 2 -4
T = [(23-2.) +Rs ] /

B. Cubic Spline Representation for +the LSM Constant

Optical Path Length Mirror of the Stanford/MSFC Dual

Path X-ray Telescope

To facilitate fabrication of the <constant OPL LSM

aspheric mirror, a cubic spline polynomial function has

been fit to the numerical data generated from Eqgs. (20)
and (22), wusing a 1least squared fitting subroutine
9

ICSFKU”. In order to fit a set of N data points (ZI R

RI) with a cubic spline polynomial, one first divides the
domain of independent variables, ZI’ into NK -1
subintervals. The end points for each subinterval is given
by an array 2ZK(I), I = 1,2, NK. Then, the cubic spline
polynomial between the end points 2ZK(I) and ZK(I-1) is

given by

-21-



' 2
2
Ry (25:) = C (1,3) [2,,—2#(:)] +cCI,2)[*?3,-—--2K(I)J
3(%3;/) =

+C(1,r)[33,-——2k(1)] +Y(x) (28)

where the coefficients C(I,J), ZK (X), and Y (I) with J =
t, 2, 3, 1 =14, 2, ---,NK-1, and K =1, 2, ---, NK. are
determined by the subroutine ICSFKU9 and Z3i belongs to

the Ith subinterval. TFor one hundred fifty (N=150) data
points and +twenty subintervals (NK= 21), the leasted error
obtained in fitting +the data with the cubic spline
polynomial is of the order of 10_13. Tables 2, 3 and 4
present the cubic spline coefficients for LSM aspheric

surface for magnifications M = 2, 5, 8, respectively.
IIT. RESULTS

In Chapter II, all equations for ray tracing the inner
channel of the Dual Path X-ray Telescope were presented for
cases when the LSM mirror was a convex sphere, concave
ellipsoid, convex hyperboloid or a constant OPL aspheric.
Section 1 will present the RMS spot radius analysis of the

inner channel for M = 2, 5, 8x, the spread in the angle of

-22-



incidence over the LSM optic and a vignetting analysis of
the primary beam by the_LSM optic. Section 2 will present

a recommended final configuration of the LSM optic.

1. BRMS Blur Circle Radius -Analysis - and - Geometrical

Properties of -LSM Optic

Before presenting the RMS blur circle radius vresults
for the 1inner channel of the Dual Path X-ray Telescope, it
is useful to discuss the imaging properties of +the WS
secondary mirror when illuminated directly by axial rays.
For axially incident light, the WS secondary mirror is a
poorly imaging element with a focal length of 34 inches.
(The focal length is defined as the distance along a ray
from the WS intersection point to the optical axis.) For
three regions of the WS secondary mirror (WS intersection

point, average WS secondary radius and minimum radius),

rays have been traced to compute the axial intercept Z

and the 1location of the meridional caustic points
10-11 . . : .

(X2c’ ch). This data is given in Table 5.

From the rotational symmetry of the WS secondary mirror,

rays from a ring an equal distance from +the optical axis

will be imaged at z. Such an image 1is known as the
saggital caustic.1o-11 The length of the saggital caustic
is equal to the spherical aberration of the system. -~ Thus,



the WS secondary has a large spherical aberration of 3.66
inches. As a result of this imaging defect, the meridional
caustic (ch, Z2c), which is the loci of image points

contained within the meridional plane (x-z), is spread out
over very large distances. It is interesting to note that
both the meridional and saggital caustic surfaces for a
paraboloid degenerate to a point at the focus. Thus, the
design assumption wused for the inner chanel of the dual
path x-ray telescope-is -not-—-satisfied.- .for .the ..spherical,
ellipsoid, or hyperboloid LSM mirror, and poor RMS blur

circule results should be expected in these cases.

Figures 5, 6, and 7 present the RMS blur circle radius
as a function of field angles for the inner channel of the

dual path X-ray telescope over the image plane locatd at

the front stop of the WS telescope Z; = 60.5 in.), when
the convex sphere, concaved ellipsoid, and convex
hyperboloid surfaces are used for the LSM mirror. In all

cases, the RMS ©blur <circle radii are too large for these
systems to be used for imaging purposes. This Dbehavior
results from the large spﬁerical aberration of the WS
secondary mirror. In order to overcome the imaging defect
of the inner channel of the dual path x-ray telescope an
aspheric surface must be wused for the LSM mirror.

Initially, one may consider the LSM aspheric mirror could

—24~



be designed by

(1) Abbe Sine Condition, which for <collimated rays
from infinity requires for all rays in the entrance
pupil

h/sinf = constant
where h is the height of ray in this entrance pupil
and @ is the angle ray makes with the optical axis
at the image plane.

(2) Constant optical path length condition for all
rays in the entrance pupil.

Referring to Fig. 4, one notes that rays with small h in
the entrance pupil are incident upon the image plane with
larger 8 . Thus, the Abbe Sine Condition will inherently be
violated by the inner channel of the dual path x-ray
telescope. However, the constant OPL condition can be used
to design on LSM aspheric optical element with zZero
spherical aberration. For the latter aspheric LSM the on
axis resolution will be good but off axis resolution will

deteriorate quickly due to coma and other aberrations.

Figures 8 and 9 present the RMS blur circle radius for
the constant OPL aspheric LSM mirror over an image ©plane
located at the front (ZI = 60.5 in) and the back (ZI =
41.3 in) of the WS telescope. One notes that the RMS over

the image plane located closer to the LSM element is

~25-



approximately 10% smaller than for the image plane 1located
at the front of +the WS telescope. Also, the RMS bdlur
circle radius is equal to zero for o= O as a result of the
constant OPL design condition. However, the RMS rapidly
increases for off axis rays, since the inner channel of the
dual path x-ray telescope does mnot obey the Abbe Sine
Condition. After consultation with MSFC Principal
Investigator, all further analysis of the inner channel of
the dual path x-ray +telescope has ©been restricted +to
considering-the constant OPL LSM mirror with the image
plane located at the front (ZI = 60.5 in) of the WS

telescope. Figure 10 presents an expanded view of Fig. 8

for field angles from 0 to 20 arc minutes.

In order to evaluate the 1imaging properties of the
inner channel of the dual path x-ray telescope and the
Ranicon detector (50 micron = 2 mil (.002 in) pixel and 25
mm = 1 inch square area), it is wuseful to know the

effective focal length of the system:

M Fgtal (M
2 67
-
8

/70
272

-26~



The angular half widths of the detector in the -entrance

pupil for M = 2, 5, 8 are given by

M o.SIM/fTOta/ ( arc-minJ

&

24
/0
8 A

These results give a first order optics approximation for
the field of view of the dual path x-ray telescope system.
Since the angles of incidence of rays on the WS secondary
are very large, paraxial optics is not very accurate for
predicting optical behavior of the dual path x-ray optical
system. Figure 11 presents the average x coordinate of the
blur circle on the image plane as a function of field of
view. By comparing PFigs. 10 and 11, it is clear that in
none of the cases considered will the off axis resolution
be very good, since the RMS blur circle radii are larger
than the average image position. The higher magnification
case spreads out the average image position more. However,
it is known for glancing incident system that the RMS over
estimates actual resolution by a factor of 2 to 3.12 But,

for the present hybrid telescope, it is not clear what is

the relationship between RMS blur circle radii and measured

-27- -



resolution. In order +to more accurately predict measured
resolution for the dual path x-ray telescope, the FWHM of
line spread function should be evaluated. PFrom Figs. 10
and 11, one may estimate the M=8x system to have a maximum
field of view of 10 to 15 arc-min with a resolution of a

few arc minutes.

Besides the resolution of the inner channel of the
dual path x-ray telescope, there are several geometrical
properties of fﬁe LSM optic which are of interest. The
following data gives +the maximum and minimum angles of
incidence, measured with respect to the LSM normal for

field of view angles from O to 20 arc minutes

M B (had) | Banx (nedD
2 0, /3824 0./5552

5 o /0738 0./2 £3

8 0./003% 0.,/1767

This information will be useful in fabrication of the LSM
mirror in controlling the layer spacings. Another
important geometrical property of +the LSM optic is the
possible vignetting of the primary WS beam by the LSM. The

following data describes the minimum radius of the primary
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beam R at the location of the LSM for a full field of

PB’
view of 20 arc minutes and the maximum radius of LSM optic,

R3max'
M Rog (in) Rypax (1)
2 27472 3. 4614
5 2.5/2 2,0704
§ 2.4058 /). 07/
Since in all cases R3max is less than RPB’ there is no

vignetting of the primary beam by the LSM optic in the

present configuration.

2. Recommended ‘Final Configuration of LSM Optic

Based on the results presented in Figs. 5-9, -it is
clear that only the constant OPL LSM configuration will
form a useful system. From Fig. 11 it follows that the
larger magnification, i.e., M=8, spreads out the image on
the detector more than smaller M. However, to determine =a
realistic increase of resolution, the FWHM of the 1line
spread function should be evaluated before fabricating the

constant OPL LSM mirror. Table 4 presents the cubic- spline
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representation for the M=8 case.

IV. CONCLUSIONS

Although the collecting area of the Stanford/MSFC WS
Telescope is increased by approximately 29 sq. in., the
off axis RMS blur circle radii for the comstant OPL LSM
mirror are very -large. Before proceeding with the
fabrication of a constant OPL LSM element for the dual Path
x-ray telescope, the FWHM of the line spread function
should be analyzed for the inner channel to determine if
the system will perform at an acceptable level of
resolution. Otherwise, an LSM element could be placed near
the primary focus of +the WS Telescope to magnify the

primary image.
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Figure 5

e Radius versus Field Angle for Spherical
LSM Mirror.
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Figure 6

RMS Blur Circle Radius versus Field for Ellipsoid
LSM Mirror.
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Figure 7

RMS Blur Circle Radius versus Field Angle for Hyperboloid
LSM Mirror. ’
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Figure 8

RMS Blur Circle Radius versus Field Angle for Constant
Optical Path Length Aspherical LSM Mirror.
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RMS Blur Circle Radius versus Field Angle for Constant
Optical Path Length Aspherical LSM Mirror.
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Table 1

NUMERICAL DATA
FOR THE INTERNAL SECONDARY MIRROR SURFACE
OF THE STANFORD/MSFC TELESCOPE

B R, ¢im) Z, Cin)
7.057309 6.190 50.0
7.090010 6.106241 49 . 09362
7.126344 6.015758 48.1170
7.162678 5.928081 47 .17269
7.199013 5.843122 46.25948
7.235347 5.760772 45.37606
7.271681 5S.680920 44.52110
7.308015 5.603459 43.69334
7.344350 5.528286 42 .89158
7.380684 5.455301 42 .11465
7.417018 5.384410 41.36147
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TABLE 2

CUBIC SPLINE COEFFICIENTS FOR LSM ASPHERIC WITH M = 2x.
K1 R, (k) | 2, (x)
1 0. 3346137D 0. 312755D 02
2 0. 342844D 01 0. 312766D 02
3 0. 2390232D 01 0. 312780D 02
4 0.325255D 01 0. 312794D 02
5 0. 331509D 01 0. 3128070 02
6 G. 327793D 01 0. 312821D 02
7 0.324109D 01 0. 312835D 02
8 0. 320454D 01 0. 31264%D 02
9 0. 316828D 01 0. 312863D 02
10 0. 313220D 01 0. 312878D 02
11 0. 309641D 01 0. 312892D 02
12 0.306119D O1 0. 31290&D 02
13 0. 302605D 01 0. 312921D 02
14 0.299118D G1 | 0.312935D 02
15 0. 295658D 01 0. 312950D 02
16 0. 292227D 01 0. 312964D 02
17 0. 2e8822D 01 0. 31297%D 02
18 0.285452D 01 0. 312994D 02
19 0.282110D 01 0. 313008D 02
20 0.278813D 01 0. 313023D 02
21 0.271475D 01 0. 313056D 02
| 7T Ca,ny | (@2 | c3)
1 0. 346137D 01 | —-0.285795D 02 | 0. 164859D 03 —0.170237D 04
2 0. 342844D O1 | -0. 28203%D 02 | 0. 158935D 03 |—0. 157612D 04
3 0. 339033D 01 | -0.277801D 02 | 0. 152416D 03 -0.1493310 o4
2 | o 3352550 01 | —0. 273708D 02 | 0. 146378D 03 | —0. 140049D 04
s |' 0.331509D 01 | —0. 269754D 02 | 0. 140485D 03 -0. 131456D 04
6 0. 327793D 01 | -0.265933D 02 | 0.135015D 03 | —0.123573D o:
2 | o0.324109D 01 | —0.262237D 02| 0.129842D 03 -0. 116305D o‘
8 0. 320454D Ol | —0.258661D 02| 0. 124945D 03 -0. 107669D 04
9 0 316828D 01 | —0. 255200D 02 | 0. 120302D 03 | —O. 103382D 04
10 0. 313230D 01 | -0.251848D 02| 0.115901D 03 -0. 981378D 03
11 0 309661D 01 | —0. 248601D 02| 0.111701D 03 | —O. 720304D 03
12 0 306119D 01 | —0. 245455D 02| 0.107742D 03 | —0. 894700D 03
13 0 302605D 01 | —0. 242406D 02| 0.103875D 03 | —O. 808125D og
14 0. 299118D O1 | -0. 239450D 02| ©.100367D 03 -0. 859206D ©O
15 0. 295658D O1 | —-0. 236587D 02| 0.966197D 02 -0. 664681D 0d
16 0.2 r_=27D o1 | -o0. 2338100 02| 0.937108D 02 | —0. 931621D og
17 0. 28882 01 | -0. 231125D 02| 0.896170D 02 | —O. A35673D 03
18 0.2854520 01| -o. 228525D 02| o©.877002D 02 | —0.123313D 04
19 o mg2110D 01 | —0. 226026D 02| ©0.822605D 02 | —O. 136200D 03
20 o 278813D 01 | -0. 2236210 02| 0.816611D 02 | —0.202130D 04

A




[~

TABLE 3

CUBIC SPLINE COEFFICIENTS For LSM ASPHERIC WITH M = 5x.

K R, ) V72 ¢k
1 Q. 207037D 01t 0. 229577D 02
a2 0. 203894D 01 0. 2239597D 02
3 0. 200256D 01 Q. 239621D 02
4 C. 19264645D 01 0. 2392645D 02
S 0. 1930&63D 01 0. 239670D 02
& 0. 189508D 01 0. 239693D 02
7 0. 1859800 01 0. 239717D 02
8 0. 1824780 01 0.239741D 02
Q 0. 1792003D 61 0. 239765D 02

10 0.179552D 01 0. 239789D 02
11 0.172128D0 01 0. 239813D 02
i2 0. 1687280 01 0. 239836D 02 -
13 0. 1£5354D 01 0. 22398600 02
14 0. 162005D 01 0. 239884D 02
15 C. 1584681D 01 0. 229907D 02
16 0. 155384640 01 0. 239931D 02
17 0. 1521150 01 Q. 239954D 02
18 0. 1488210 01 0. 239977D 02
19 0. 145675D 01 0. 240001D 02
2 0. 142520D 01 0. 240024D 02
21 0. 135742D 01 0. 240073D 02

oSN WN ™

Y(T) C(1T,1) C (T,2) C(T,3)

0. 207037D 01 -D. 152166D 02 0. 190461D 02 —-0. 341442D 02
0. 2038B%4D 01 | —-0. 12138B2D 02 0.188341D 02 | -0. 339481D o2
. 2002560 01 -0. 15047%D 02 0. 18B3885D 02 —0. 337631D 0O
0. 196645D 01 | -0. 149591D 02| 0.183448D 02 | -0. 3355380 02
0. 193063D O1 -0. 148715D 02 0.181030D 02 ~-0. 333691D 02
0. 189508D 01 —-0. 147853D 02| 0. 178630D 02 —0. 331672D 02
0. 185980D 01 -0D. 147004D O2 0. 176249D 02 —0. 329957D 02
0.182478D 01 | —-0. 146167D 02| 0.173884D 02| -0. 328924D 02
0. 1790030 0O1 —-0. 145344D 02 0.171531D 02 —-0. 326365D 02
0.175552D 01 -0. 144533D 02 0. 169201D 02 —-0. 330589D 02
0.172128D0 01 | -0.143734D 02 0. 166844D 02 -0. 3197700 02
0. 168728D 01 ~0. 142948D O2 0. 164569D 02 -~0. 348B318D 02
0. 165354D 01 -0.1421735D 02 0. 162096D 02 -0. 295517D 02
0. 1£2005D 01 —0. 141414D 02 0. 160002D 02 -~0. 418496D 02
0. 158681D 01 —-0. 140667D 02 0.157043D 02 -0.211867D 02
0. 155386D 01 | —0. 1399330 02} 0. 155550D 02 | -0. 629752D 02
0.152115D 01 | —0. 139214D 02] 0. 151122D 02 _0.574528D 00
0. 1488810 0O1 —-0. 138510D 02} 0.151163D 02 -0.118143D 03
0. 145675D O1 -0. 137828D0 02 0. 142939D 02 0. 347495D 02
0. 142520D O1 | -0. 137166D 02} 0. 145331D 02 | —0. 267428D 03
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CUBIC SPLINE COEFFICIENTS FOR LSM ASPHERIC WITH M =

TABLE 4

y o
K Jej;(f< ) é% (]<)
1 |0.1£0705D 01 | 0.215202D
> |0 1576310 01 | o 2132250 oa
3 |0.154028D 01 | G. 215252D 02
4 |0 150471D 01 | 0.215278D 02
5 ]o0. 1265320 01 | 0 215204D 02
6 |0 142428D 01 |0.215331D 02
7 |0 1399s50D 01 | 0.215357D €2
8 |0 1245080 01 | 0. 215383D 02
9 |o0.122080D 01 | 0.215409D 02
10 | 6.125677D 01 | 0. 215435D 02
11 | 0.126295D 01 | 0.215261D 02
12 | 0.122945D 01 | 0.215487D 02
13 10.1:96150 01 [0.215513D 02
14 | 0.116311D G1 | 0.215538D 02
15 |0 1130210 01 | o 2133640 03
16 |0.109775D 01 | G. 2155900 02
17 | 0.10£551D 01 [ 0.215615D 02
12 | 0.103360D 01 | 0. 215640D 02
19 | 0.100198D 01 | 0 215666D 02
20 | 0.970824D 00 | 0.215690D 02
21 | 0.904535D0 00 | 0 215743D 02

8x.

1 >/(/) ) @, 1) (1,3
1 0. 160705D -0. 13&6145D 02 0. 123576D -0. 142932D 02
- 0.157&11D 01 —-0. 12597&D 02 0. 124600D O"’ —0. 144416D 02
4 | 0.150471D 01 | -0. 134269D 02 0. 122294D 02 { —0.147463D 02
s | 0. 196942D 01 | -0. 123628D 02 0.121128D 02 | —0.148971D 02
6 0. 1434380 01 [ —-0. 132994D 02 0. 119954D 02 —0.150270D 0Og
7 0. 1399&0D 01 ~0. 13236ED 02 0.118772D 02 -0:151771D 04
8 0. 1265080 01 | -0. 131750D 02 0.117581D 02 —0. 1535980 03
9 0. 133080D 01 | -0.131140D 02 0.116380D 02 —0. 1544566D 03
10 0. 129&677D 01 | —0. 130538D 02 0.115175D 02 —~0. 1597320 02
11 0. 126295D 01 | —0. 129944D 02 0.113932D 02 =0. 1549740 02
12 0. 122945D 01 | —0. 129357D 02 0.11272%9D 02 —-0.176746D 02
13 | 0.119615D 01 | —0. 128779D 02 0.111361D 02 | -0.143317D 02
14 0.116211D 01 | —O. 128209D 02 0.110255D 02 -0. 229937D 02
15 0.113031D 01 | -0. 127649D 02 0.108487D 02 -0. 9098220 01
16 | 0.109779D 01 | —0. 1270%6D 02 0.107790D 02 | —0.380883D0 02
17 | 0. 106551D 01 | —0. 126555D 02 0.104881D 02 0. 519344D 01
18 0. 103260D 01 | 0. 126024D 02 0.105275D 02 | —0.769125D 02-
19 0.100198D 01 | —0. 125509D 02 0. 994732D 01 0. 2769900 02-
20 0. 970884D 00 ~-0. 125010D 02 0.101536D 02 ~0. 1B59735D 03
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Table S

WS SECONDARY MIRROR IMAGING DATA
All units are inches

R, Z, z Xac Z3¢
6.188 49.984 16.709 -2.53 3.10
5.755 4s5.318 . 14.750 -35.53 1 -103.9
5.386 a1.385 13.049 -31.01 -150.03
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