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Abstract

We study the decay width and CP -asymmetry of the inclusive process b → sgg (g
denotes gluon) in the three and two Higgs doublet models with complex Yukawa couplings.
We analyse the dependencies of the differential decay width and CP -asymmetry to the s-
quark energy Es and CP violating parameter θ. We observe that there exist a considerable
enhancement in the decay width and CP asymmetry is at the order of 10−2. Further, it
is possible to predict the sign of Ceff

7 using the CP asymmetry.
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1 Introduction

Rare B-meson decays, induced by flavor changing neutral currents (FCNC), involve at the

loop level in the standard model (SM), therefore they are phenomenologically rich. The mea-

surements of the branching ratio (Br), CP asymmetry (ACP ), forward-backward asymmetry,

polarization effects, etc., provide restrictions on the SM parameters, such as the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements, leptonic decay constants, etc. In addition, the

possibility of replacing the SM particles by non-standard ones results in the sensitivity of these

decays beyond the SM, like multi-Higgs doublet models, minimal supersymmetric extension of

the SM (MSSM) [1], etc. The experimental effort at SLAC, KEK B-factories, HERA-B and

possible future accelerators [2, 3] stimulate the theoretical studies on these rare decays.

Among B-meson decay modes, inclusive b → sg decay becomes attractive since it is theo-

retically clean and affected by loop contributions due to new physics beyond the SM. In the

literature, there are various theoretical calculations on the Br of this decay. In the SM, the

Branching ratio of b → sg decay was calculated as Br(b → sg) ∼ 0.2% for on-shell gluon

[4]. However, to decrease the averaged cham multiplicity ηc [5] and to increase kaon yields [6]

the enhancement of Br(b → sg) is helpful. The possibilities for the enhancement is the addi-

tion of the QCD corrections and non-standard effects coming from the new physics. In [7, 8],

Br (b → sg) was calculated in the 2HDM (Model I and II) for mH± ∼ 200GeV and tan β ∼ 5

and it was found that there was an enhancement less than one order of magnitude. Further,

this decay was studied in the supersymmetric models [9] and in the framework of model III

2HDM [10]. In the model III, the enhancement was found at least one order of magnitude

larger compared to the SM one and it was observed that there was no contradiction with the

CLEO data [11]

Br (b → sg∗) < 6.8% (1)

for light-like gluon case. Recently, O(αs) virtiual corrections and additional O(αs) brem-

strahlung effects to the decay width of b → sg was calculated in the SM [12] and the en-

hancement in the Br was obtained as more than a factor of two larger of the previous SM

results.

The inclusive process b → sgg is another decay which has Br at the same order as Br (b →
sg) according to the studies in the literature [13, 14, 15]. This process becomes not only from

the chain decay b → sg∗ followed by g∗ → gg but also from the emission of on-shell gluons from

the quark lines to obey gauge invariance. In [14], the complete calculation was done in the
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collinear and infrared singularity free region, in the SM and Br ratio was found at the order

of magnitude 10−3. In [10, 15] the additional contribution of gluon penguins in the model III

was estimated as negligible. Recently b → sgg was studied in the model III with real Yukawa

couplings [16] and a considerable enhancement was observed for the Br of the process even 2

orders of magnitude larger compared to the SM case.

In this work, we study the decay width Γ and the CP asymmetry ACP of b → sgg decay

in the model III and the 3HDM(O2). The reason to study the b → sgg process is the possible

considerable enhancement of Γ compared to the one in the SM and the measurable ACP in

the framework of the models underconsideration. In our theoretical calculations we choose the

collinear and infrared singularity free kinematical region, following the procedure given in [14].

Here we take the source of CP violation as the complex Yukawa couplings appearing in both

models.

The paper is organized as follows: In Section 2, we give a brief summary of the 3HDM(O2)

and present the calculation of the decay width of the inclusive b → sgg decay in the framework

of the 3HDM(O2) and the model III. Further we calculate the (differential) CP -asymmetry

(ACP (Es)) ACP of the process. Section 3 is devoted to discussion and our conclusions. In

Appendixes, we give the form factors appearing in the matrix element of the decay undercon-

sideration and summarize the theoretical results for the 3HDM(O2).

2 The inclusive process b → sgg in the framework of the

model III and 3HDM(O2)

The general Yukawa interaction in 3HDM is

LY = ηUijQ̄iLφ̃1UjR + ηDij Q̄iLφ1DjR + ξUijQ̄iLφ̃2UjR + ξDij Q̄iLφ2DjR

+ ρUijQ̄iLφ̃3UjR + ρDijQ̄iLφ3DjR + h.c. , (2)

where L and R denote chiral projections L(R) = 1/2(1∓ γ5), φi for i = 1, 2, 3, are three scalar

doublets and ηU,Dij , ξU,Dij , ρU,Dij are the Yukawa matrices having complex entries, in general. With

the choice of scalar Higgs doublets

φ1 =
1√
2

[(

0
v +H0

)

+

( √
2χ+

iχ0

)]

,

(3)

φ2 =
1√
2

( √
2H+

H1 + iH2

)

, φ3 =
1√
2

( √
2F+

H3 + iH4

)

,
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and the vacuum expectation values,

< φ1 >=
1√
2

(

0
v

)

;< φ2 >= 0 ;< φ3 >= 0 , (4)

the SM particles carried by the first doublet and the information about the new physics by the

others. The Yukawa interaction

LY,FC = ξUijQ̄iLφ̃2UjR + ξDij Q̄iLφ2DjR + ρUijQ̄iLφ̃3UjR + ρDijQ̄iLφ3DjR + h.c. . (5)

describes the Flavor Changing (FC) one beyond the SM. Here, the couplings ξU,D and ρU,D for

the charged FC interactions are

ξUch = ξN VCKM ,

ξDch = VCKM ξN ,

ρUch = ρN VCKM ,

ρDch = VCKM ρN , (6)

and

ξU,DN = (V U,D
L )−1ξU,D V U,D

R ,

ρU,DN = (V U,D
L )−1ρU,D V U,D

R , (7)

where the index ”N” in ξU,DN denotes the word ”neutral”. Note that the Yukawa interaction

for the model III can be obtained by taking into account only two doublets φ1, φ2 and Yukawa

couplings ηUij , ξ
U
ij .

The decay amplitude of the process b → sgg is given by

M(b → sgg) = i
αsGF√

2π
ǫµa(k1)ǫ

ν
b (k2)s̄(p

′)T a b
µν b(p) , (8)

where ǫµa(k) are polarization vectors of the gluons with color a and momentum k,

T a b
µν = Tµν

λb

2

λa

2
+ TE

µν

λa

2

λb

2
. (9)

Here λa

2
are the Gell-Mann matrices and TE

µν can be obtained by the replacements k1 ↔ k2,

µ ↔ ν in the function Tµν .

Since the process occurs at least at one-loop level in the SM, the function Tµν have con-

tributions coming from light and heavy internal quarks, namely, u, c, t. Internal quarks d, s, b

can also give contribution to the process beyond the SM. In the case of heavy internal quark,
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t-quark, the terms k2
external/m

2
i (m

2
W , m2

H± , m2
F±) are neglected. However, for light internal

quarks, k2
external/m

2
i terms can give considerable contribution. This forces us to parametrize

the function Tµν as

Tµν = T heavy
µν + T light

µν , (10)

(for the explicit forms of T heavy
µν and T light

µν see Appendix A). On the other hand, T a b
µν can be

divided into color symmetric and antisymmetric parts as [14]

T a b
µν = T+

µν{
λb

2
,
λa

2
}+ T−

µν [
λb

2
,
λa

2
] , (11)

with

T+
µν =

1

2
(Tµν + TE

µν) ,

T−

µν =
1

2
(Tµν − TE

µν) . (12)

Finally, using the expression

ΓSym (Asym) ∼ Tr(C+(−)T+(−)
µν ( 6p+mb)) T̄

+(−)
µ′ν′ 6p′)P µµ′

P νν′ , (13)

with the color factors C+ = (N2
c−1)(N2

c −2)
2Nc

and C− = Nc (N2
c−1)
2

and the polarization sum of the

on-shell gluons

P µµ′

= −gµµ
′

+
kµ
1 k

µ′

2 + kµ
2 k

µ′

1

k1.k2
,

we get the differential decay width of the process

d2 Γ

dEs dE1
=

1

2π3

1

8mb

|M̄ |2 . (14)

Here Es is the s-quark energy and E1 is the energy of gluon with polarization ǫaµ(k1). M̄ is the

average decay amplitude, M̄ = 1
2 J+1

1
Nc

M , and J = 1
2
, Nc = 3.

In the expressions, the symmetric and antisymmetric parts do not mix each other. Further,

the decay width can be divided into three sectors (see Appendix A):left (ΓL), right (ΓR) and

left-right (ΓLR). Left one is created by the nonvanishing k2
external/m

2
light terms, however right

sector contains the forms factors with parameters m2
i /m

2
W and m2

i /m
2
H where i = u, c, t and H

is one of the Higgs bosons. Left-right sector contains mixed terms.

Now we are ready to calculate the CP -violating asymmetry ACP of the process b → sgg.

In the model III and 3HDM(O2), the complex Yukawa couplings are possible sources for CP
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violation. Our procedure is to neglect neutral boson effects and all Yukawa couplings except

ξ̄UN,tt and ξ̄DN,bb (ǭ
U
N,tt and ǭDN,bb) (see Discussion) in the model III (3HDM(O2)) (see Appendix

B for the definitions of ǭUN,tt and ǭDN,bb). Therefore, in the model III (3HDM(O2)), only the

combination ξ̄UN,ttξ̄
D
N,bb (ǭ

U
N,ttǭ

D
N,bb) is responsible for ACP . Using the parametrization

λθ =











1
mt mb

ξ̄UN,tt ξ̄
D
N,bb e

i θ (model III) ,

1
mt mb

ǭUN,tt ǭ
D
N,bb (cos

2 θ + isin2 θ) (3HDM(O2)) ,

and the definition of differential CP asymmetry ACP (Es)

ACP (Es) =
d2 Γ

dEs dE1
(b → sgg)− d2 Γ

dEs dE1
(b̄ → s̄gg)

d2 Γ
dEs dE1

(b → sgg) + d2 Γ
dEs dE1

(b̄ → s̄gg)
, (15)

we get

ACP (Es) = 2Im(λθ)G2 (yt)
(Im(∆F1 −∆ i2)) Ω

Λ
(16)

where

Ω = 18E1mb (2E1−mb)(−2Es +mb) ((2Es −mb)mb + 2E1 (2Es +mb)) ,

Λ = −2 |F̃2|2mb (2496E
5
1 + 192E4

1 (20Es − 23mb) +m3
b (−28E2

1 + 44Esmb − 15m2
b)

+ 2E1m
2
b (172E

2
s − 208Esmb + 69m2

b)− 4E2
1 mb (316E

2
s − 562Esmb + 213m2

b)

+ 8E3
1 (204E

2
s − 638Esmb + 357m2

b))

+ 2Re(F̃2)Re(∆F1 −∆ i2) Ω + 8E2
1 (2E1 −mb) (−2Es +mb)(7 |∆ i5|2Esmb + 9 |∆ i2|2

(8E2
1 + 8E1 (Es −mb) +mb (−3Es + 2mb))

+ 9 |∆F1|2 (8E2
1 + 8E1 (Es −mb) +mb (−3Es + 2mb))

− 18Re(∆F ∗

1 ∆ i2) (8 (E
2
1 + E1 Es −E1 mb)− 3Esmb + 2m2

b) . (17)

Here θ is the CP violating parameter which is restricted by the experimental upper limit of

the neutron electric dipole moment eq. (22) and F̃2 = F 3HDM
2 − F SM

2 (0), ∆F1, ∆ i2, and ∆ i5

are the Wilson coefficients (eqs.(24) and (30)). For the calculation of the CP asymmetry ACP

ACP =
Γ(b → sgg)− Γ(b̄ → s̄gg)

Γ(b → sgg) + Γ(b̄ → s̄gg)
, (18)

the integration over E1 and Es should be done. However there are collinear divergences at the

boundary of the kinematical region. To overcome these divercences we follow the procedure

given in [14], namely taking a cutoff c in the integration over phase space as:

mb

2
−Es ≤ E1 ≤ mb

2
(1− c) , (19)
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and

c
mb

2
≤ Es ≤ mb

2
(1− c) , (20)

with c = 0.1. Note that left-right sector gives small contribution to Γ, however this part is

responsible for the ACP . Further ACP contains only antisymmetric sector.

3 Discussion

In the general 3HDM model, there are many free parameters, such as masses of charged and

neutral Higgs bosons, complex Yukawa matrices, ξU,Dij , ρU,Dij where i, j are quark flavor indices.

The additional global O(2) symmetry in the Higgs flavor space connects the Yukawa matrices

in the second and third doublet and also keeps the masses of new charged (neutral) Higgs

particles in the third doublet to be the same as the ones in the second doublet (Appendix

B). Further, the Yukawa couplings, which are entries of Yukawa matrices, can be restricted

using the experimental measurements, ∆F = 2 mixing, the ρ parameter [17] and the CLEO

measurement [18],

Br(B → Xsγ) = (3.15± 0.35± 0.32) 10−4 . (21)

In our calculations, we neglect all Yukawa couplings except ξ̄UN,tt ,ξ̄
D
N,bb, ρ̄

U
N,tt and ρ̄DN,bb by re-

specting these measurements. The same restrictions are done in the model III case and only

ξ̄UN,tt and ξ̄DN,bb are taken into account.

In this section, we study the s quark energy Es dependency of the differential decay width

dΓ
dEs

, differential CP -asymmetry ACP (Es) and the parameter sinθ dependency of the decay

width Γ, CP -asymmetry ACP for the inclusive decay b → sgg in the framework of the model

III and 3HDM(O2). In our analysis, we restrict the parameters θ, ǭUN,tt and ǭDNbb (ξ̄UN,tt and

ξ̄DNbb in the model III) using the constraint for |Ceff
7 |, 0.257 ≤ |Ceff

7 | ≤ 0.439 where the upper

and lower limits were calculated in [19] following the procedure given in [20]. Here Ceff
7 is

the effective magnetic dipole type Wilson coefficient for b → sγ vertex (see [19]). The above

restriction allows us to define a constraint region for the parameter ǭUN,tt (ξ̄
U
N,tt) in terms of ǭDN,bb

(ξ̄DN,bb) and θ in the 3HDM(O2) (the model III). Our numerical calculations based on this

restriction and the constraint for the angle θ, due to the experimental upper limit of neutron

electric dipole moment, namely

dn < 10−25e·cm (22)
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which places an upper bound on the couplings with the expression in 3HDM(O2) (model III):

1
mtmb

(ǭUN,tt ǭ
∗D
N,bb)sin

2 θ < 1.0 ( 1
mtmb

(ξ̄UN,tt ξ̄
∗D
N,bb)sin θ < 1.0) for mH± ≈ 200 GeV [21]. Throughout

these calculations, we take the charged Higgs mass mH± = 400GeV , and we use the input

values given in Table (1).

Parameter Value

mc 1.4 (GeV)
mb 4.8 (GeV)
λt 0.04
mt 175 (GeV)
mW 80.26 (GeV)
mZ 91.19 (GeV)
ΛQCD 0.214 (GeV)
αs(mZ) 0.117
c 0.1

Table 1: The values of the input parameters used in the numerical calculations.

In Fig. 1 (2) we plot dΓ
dEs

with respect to the s quark energy Es, for sinθ = 0.5, ξ̄DN,bb = 40mb

and |rtb| = | ξ̄
U
N,tt

ξ̄D
N,bb

| < 1. dΓ
dEs

is restricted in the region bounded by solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0). Dotted line represents the SM contribution. There is a large enhancement in the

differential decay width for Ceff
7 > 0 and Ceff

7 < 0 in both models. (see [16] for the model III

with real Yukawa couplings). In the 3HDM(O2), the enhancement is smaller and the restriction

regions are broader compared to the ones in the model III.

Fig. 3 is devoted to the sinθ dependence of Γ for ξ̄DN,bb = 40mb and Ceff
7 < 0 in the region

|rtb| < 1. Here Γ in the model III (3HDM(O2)) is restricted in between solid (dashed) lines.

As shown in the figure, the decay width Γ increases with increasing sinθ. Further, the upper

and lower bounds for Γ in the model III exceed the ones in the 3HDM(O2) especially for the

intermediate values of the parameter sinθ. Further Γ can reach the value 10−3GeV in both

models and this is a considerable enhancement compared to the SM one, which is at the order

of magnitude 10−5GeV (see [14, 16]).

Fig. 4 (5) shows the Es dependence of ACP (Es) in the model III (3HDM(O2)). Here solid

(dashed) lines are the boundaries of the allowed regions of ACP (Es) for C
eff
7 > 0 (Ceff

7 < 0).

In model III, the restriction region for ACP (Es) is narrow for Ceff
7 > 0 and it has only negative

values at the order of magnitude 10−3. However, for Ceff
7 < 0, this region is broader and

contains both negative and positive values. The possible values of |ACP (Es)| reaches ∼ 4%

for 0.8GeV ≤ Es ≤ 1.0GeV . In the 3HDM(O2), upper and lower boundaries of the allowed
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region for ACP (Es) are almost coincides for Ceff
7 > 0 and this region becomes narrower for

Ceff
7 < 0 compared to the one in the model III. In this model |ACP (Es)| can be ∼ 2.5% as a

maximum value.

In Fig. 6 and Fig. 7, we represent the sinθ dependence of ACP in the model III and

3HDM(O2). ACP is restricted in the narrow region bounded by solid lines for Ceff
7 > 0

and it reaches −0.8% for sinθ = 0.7 in both models. All possible values of ACP are negative in

this case. However, for Ceff
7 < 0, allowed region becomes broader and ACP can take positive

and negative values. For this case, |ACP | can reach 3.4%. Note that the restricted regions are

broader in the model III compared to the ones in 3HDM(O2).

As a conclusion, we get an enhancement in the decay width of the process b → sgg in both

models, model III and 3HDM(O2). This enhancement is too large to respect the total decay

width Γtot(b → sX) = 3.50± 1.50 10−3GeV for Ceff
7 > 0. For Ceff

7 < 0, Γ can reach the values

more than two orders of magnitude larger compared to the SM case. Further, we study ACP

of the process b → sgg in both models. In the SM, the only source for the CP-violation is the

complex Cabbibo-Kobayashi-Maskawa matrix elements and almost there is no violation for this

process. However in the model III and the 3HDM(O2), the absolute value of ACP can reach

to 3 − 4%, which is a measurable quantity. In addition, we observe that Ceff
7 is necessarily

negative if ACP has positive values. Therefore the experimental study of the decay width Γ

and ACP of the process b → sgg can give important clues for the physics beyond the SM and

also the sign of Ceff
7 .
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Appendix

A The form factors appearing in the b → sgg decay

The function Tµν can be divided into two parts:

Tµν = T heavy
µν + T light

µν .

Here T heavy
µν is the contribution due to the heavy internal quark and neglecting s-quark mass,

it is given as

T heavy
µν = −i λt F

3HDM
2 {(2 p

′

ν + γν 6k2
2 p′.k2

σµαk
α
1 + σναk

α
2

2pµ− 6k1γµ
−2p.k1

)

+
1

q2
(2 σαβk

α
1 k

β
2 gµν + 2 σναk2µ q

α − 2 σµαk1 ν q
α + σµνq

2)}mbR . (23)

where q is the momentum transfer, q = k1 + k2, λt is the CKM matrix combination λt = VtbV
∗

ts

and F 3HDM
2 is the form factor

F 3HDM
2 = F SM

2 (xt) + FBeyond
2 (yt, y

′

t). (24)

In eq. (24), F SM
2 (xt) is the magnetic dipole form factor of b → sg∗ vertex

F SM
2 (xt) =

−8 + 38 xt − 39 x2
t + 14 x3

t − 5 x4
t + 18 x2

t ln xt

12 (−1 + xt)4
, (25)

and FBeyond
2 (yt, y

′

t) is the contribution coming from the charged Higgs bosons in 3HDM(O)2:

FBeyond
2 (yt, y

′

t) =
1

m2
t

(ξ̄∗UN,tt + ξ̄∗UN,tc

V ∗

cs

V ∗
ts

) (ξ̄UN,tt + ξ̄UN,tc

Vcb

Vtb

)G1(yt)

+
1

mtmb

(ξ̄∗UN,tt + ξ̄∗UN,tc

V ∗

cs

V ∗
ts

) (ξ̄DN,bb + ξ̄DN,sb

Vts

Vtb

)G2(yt)

+
1

m2
t

(ρ̄∗UN,tt + ρ̄∗UN,tc

V ∗

cs

V ∗
ts

) (ρ̄UN,tt + ρ̄UN,tc

Vcb

Vtb

)G1(y
′

t)

+
1

mtmb

(ρ̄∗UN,tt + ρ̄∗UN,tc

V ∗

cs

V ∗
ts

) (ρ̄DN,bb + ρ̄DN,sb

Vts

Vtb

)G2(y
′

t) (26)

with

G1 (y) =
y

12 (−1 + y)4
((−1 + y) (−2− 5 y + y2) + 6 y ln y)) ,

G2 (y) =
1

2 (−1 + y)4
(y (3− 4 y + y2) + 2 (−1 + y) y ln y) . (27)
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where yt =
m2

t

m
H±

and y′t =
m2

t

m
F±

(see appendix B). In eq. (26) we used the redefinition

ξ (ρ)U,D =

√

4GF√
2

ξ̄(ρ̄)U,D . (28)

In eq. (10), T light
µν contains two different parts related to the light internal quarks. The

first one is obtained from T heavy
µν with the replacement F 3HDM

2 → −F SM
2 (0) and the second one

T light
2µν is the contribution due to the non-vanishing k2

external/m
2
light terms

T light
2µν = −λt {(∆ i2 −∆F1)( 6k1− 6k2) gµν L+∆ i5 i ǫαµνβγ

β(kα
1 − kα

2 )L

− 2∆F1 (γν k2µ − γµ k1 ν)L} (29)

where

∆F1 = −2

9
− 4

3

Q0(z)

z
− 2

3
Q0(z) ,

∆i2 = −5

9
− 2

Q−(z)

z
+

8

3

Q0(z)

z
− 2

3
Q0(z) ,

∆i5 = −1− 2
Q−(z)

z
, (30)

with

Q0(z) = −2− (u+ − u−)(ln
u−

u+
+ iπ) ,

Q−(z) =
1

2
(ln

u−

u+
+ iπ)2 . (31)

Here the parameter u± is

u± =
1

2
(1±

√

1− 4

z
) , (32)

and

z =
q2

m2
i

, i = u, c . (33)

Finally the function Tµν reads as

Tµν = αR (T heavy
µν + T heavy

µν (F 3HDM
2 → −F SM

2 (0))) + αL T
light
2 µν . (34)

Here αR, αL are real parameters to seperate the parts with factors R and L in the fuction Tµν .

With this parametrization Γ can be written as

Γ = α2
RΓ

R + α2
LΓ

L + αRαLΓ
LR|αL→1,αR→1 . (35)

Note that the expressions for the model III case can be obtained by disregarding the Yukawa

couplings ρ̄
U,(D)
N,ij in eq. (26).
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B 3HDM(O2)

In the multi-Higgs doublet (n > 2) models, the Higgs sector is extended and therefore the

number of free parameters, namely, masses of charged and neutral Higgs particles, Yukawa

couplings, extremely increases. In our problem we choose n = 3 and to overcome the difficulty

coming from the large number of free parameters we consider 3 Higgs scalars as orthogonal

vectors in the Higgs flavor space, denoting by the index m”, where m = 1, 2, 3. At this stage

we introduce a new global O(2) symmetry on the Higgs sector [22]

φ′

1 = φ1 ,

φ′

2 = cos α φ2 + sin α φ3 ,

φ′

3 = −sin α φ2 + cos α φ3 , (36)

where α is the global parameter, which represents a rotation of the vectors φ2 and φ3 along

the axis that φ1 lies, in the Higgs flavor space. This transformation keeps the kinetic term of

3HDM Lagrangian invariant:

LKinetic = (Dµφi)
+Dµφi =

(∂µφ
+
i + i

g′

2
Bµφ

+
i + i

g

2
φ+
i

~τ

2
~Wµ)

(∂µφi − i
g′

2
Bµφi − i

g

2
φi

~τ

2
~W µ) (37)

where

φi =

(

φ+

φ0

)

i = 1, 2, 3 . (38)

The invariance of the potential term

V (φ1, φ2, φ3) = c1(φ
+
1 φ1 − v2/2)2 + c2(φ

+
2 φ2)

2

+ c3(φ
+
3 φ3)

2 + c4[(φ
+
1 φ1 − v2/2) + φ+

2 φ2 + φ+
3 φ3]

2

+ c5[(φ
+
1 φ1)(φ

+
2 φ2)− (φ+

1 φ2)(φ
+
2 φ1)]

+ c6[(φ
+
1 φ1)(φ

+
3 φ3)− (φ+

1 φ3)(φ
+
3 φ1)]

+ c7[(φ
+
2 φ2)(φ

+
3 φ3)− (φ+

2 φ3)(φ
+
3 φ2)]

+ c8[Re(φ+
1 φ2)]

2 + c9[Re(φ+
1 φ3)]

2 + c10[Re(φ+
2 φ3)]

2

+ c11[Im(φ+
1 φ2)]

2 + c12[Im(φ+
1 φ3)]

2 + c13[Im(φ+
2 φ3)]

2 + c14 (39)
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can be obtained if the following conditions on the free parameters are satisfied:

c5 = c6 , c8 = c9 , c11 = c12 ,

c2 = c3 = c7 = c10 = 0 . (40)

This implies that the masses of new particles are the same as the older ones, namely,

mF± = mH± = c5
v2

2
,

mH3 = mH1 = c8
v2

2
,

mH4 = mH2 = c11
v2

2
,

(41)

Further, the application of this transformation to the Yukawa Lagrangian (eq.(2)) keeps it

invariant if the transformed Yukawa matrices satisfy the expressions

ξ̄
′U(D)
ij = ξ̄

U(D)
ij cos α+ ρ̄

U(D)
ij sin α ,

ρ̄
′U(D)
ij = −ξ̄

U(D)
ij sin α + ρ̄

U(D)
ij cos α . (42)

and therefore

(ξ̄′U(D))+ξ̄′U(D) + (ρ̄′U(D))+ρ̄′U(D) = (ξ̄U(D))+ξ̄U(D) + (ρ̄U(D))+ρ̄U(D) , (43)

which allows us the following possible parametrization of the Yukawa matrices ξ̄U(D) and ρ̄U(D):

ξ̄U(D) = ǫU(D)cos θ ,

ρ̄U = ǫUsin θ ,

ρ̄D = iǫDsin θ , (44)

where ǫU(D) are real matrices satisfy the equation

(ξ̄′U(D))+ξ̄′U(D) + (ρ̄′U(D))+ρ̄′U(D) = (ǫU(D))T ǫU(D) (45)

Here T denotes transpose operation. In eq. (44), we take ρ̄D complex to carry all CP violating

effects in the third Higgs scalar.

Therefore we can reduce the number of free parameters taking the new charged and neutral

boson masses as the same as the older ones and connecting the Yukawa matrices ξ̄U(D) and

ρ̄U(D) using the expression eq. (45).

12



Note that, neglecting the off-dioganal Yukawa couplings, the expression for FBeyond
2 (yt, y

′

t)

(eq. (26)) can be written as

FBeyond
2 (yt) =

1

m2
t

(ǭUN,tt)
2G1(yt) +

1

mtmb

ǭUN,tt ǭ
D
N,bbG2(yt) (cos

2 θ + i sin2 θ) (46)
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Figure 1: dΓ
dEs

as a function of Es for fixed ξ̄DN,bb = 40mb, sinθ = 0.5 and |rtb| = | ξ̄
U
N,tt

ξ̄D
N,bb

| < 1 in

the model III. Here dΓ
dEs

is restricted in the region bounded by solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0). Dotted line represents the SM contribution.
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Figure 2: The same as Fig. 1 but for 3HDM(O2).
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Figure 3: Γ as a function of sin θ for Ceff
7 < 0, ξ̄DN,bb = 40mb, and |rtb| < 1. Here Γ is restricted

in the region bounded by solid (dashed) lines for the model III (3HDM(O2)).
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Figure 4: ACP (Es) as a function of Es for fixed ξ̄DN,bb = 40mb, sinθ = 0.5 and |rtb| < 1 in the

model III. Here ACP (Es) is restricted in the region bounded by solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0).
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Figure 5: The same as Fig. 4, but for 3HDM(O2).
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Figure 6: ACP as a function of sin θ for ξ̄DN,bb = 40mb and |rtb| < 1 in the model III. Here ACP
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Figure 7: The same as Fig 6, but for 3HDM(O2).
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