520 research outputs found
Modeling measurement error in tumor characterization studies
<p>Abstract</p> <p>Background</p> <p>Etiologic studies of cancer increasingly use molecular features such as gene expression, DNA methylation and sequence mutation to subclassify the cancer type. In large population-based studies, the tumor tissues available for study are archival specimens that provide variable amounts of amplifiable DNA for molecular analysis. As molecular features measured from small amounts of tumor DNA are inherently noisy, we propose a novel approach to improve statistical efficiency when comparing groups of samples. We illustrate the phenomenon using the MethyLight technology, applying our proposed analysis to compare <it>MLH1 </it>DNA methylation levels in males and females studied in the Colon Cancer Family Registry.</p> <p>Results</p> <p>We introduce two methods for computing empirical weights to model heteroscedasticity that is caused by sampling variable quantities of DNA for molecular analysis. In a simulation study, we show that using these weights in a linear regression model is more powerful for identifying differentially methylated loci than standard regression analysis. The increase in power depends on the underlying relationship between variation in outcome measure and input DNA quantity in the study samples.</p> <p>Conclusions</p> <p>Tumor characteristics measured from small amounts of tumor DNA are inherently noisy. We propose a statistical analysis that accounts for the measurement error due to sampling variation of the molecular feature and show how it can improve the power to detect differential characteristics between patient groups.</p
DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight
Alterations in cytosine-5 DNA methylation are frequently observed in most types of human cancer. Although assays utilizing PCR amplification of bisulfite-converted DNA are widely employed to analyze these DNA methylation alterations, they are generally limited in throughput capacity, detection sensitivity, and or resolution. Digital PCR, in which a DNA sample is analyzed in distributive fashion over multiple reaction chambers, allows for enumeration of discrete template DNA molecules, as well as sequestration of non-specific primer annealing templates into negative chambers, thereby increasing the signal-to-noise ratio in positive chambers. Here, we have applied digital PCR technology to bisulfite-converted DNA for single-molecule high-resolution DNA methylation analysis and for increased sensitivity DNA methylation detection. We developed digital bisulfite genomic DNA sequencing to efficiently determine single-basepair DNA methylation patterns on single-molecule DNA templates without an interim cloning step. We also developed digital MethyLight, which surpasses traditional MethyLight in detection sensitivity and quantitative accuracy for low quantities of DNA. Using digital MethyLight, we identified single-molecule, cancer-specific DNA hypermethylation events in the CpG islands of RUNX3, CLDN5 and FOXE1 present in plasma samples from breast cancer patients
Gamma radiation survey of the LDEF spacecraft
The retrieval of the Long Duration Exposure Facility spacecraft in January 1990 after nearly six years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. We conducted the first complete gamma-ray survey of a large spacecraft on LDEF shortly after its return to earth. A surprising observation was the Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes observed during the survey, the strongest being Na-22, are all attributed to activation of spacecraft components. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic-ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit
The Presampler for the Forward and Rear Calorimeter in the ZEUS Detector
The ZEUS detector at HERA has been supplemented with a presampler detector in
front of the forward and rear calorimeters. It consists of a segmented
scintillator array read out with wavelength-shifting fibers. We discuss its
desi gn, construction and performance. Test beam data obtained with a prototype
presampler and the ZEUS prototype calorimeter demonstrate the main function of
this detector, i.e. the correction for the energy lost by an electron
interacting in inactive material in front of the calorimeter.Comment: 20 pages including 16 figure
Association between molecular subtypes of colorectal cancer and patient survival
BACKGROUND and AIMS: Colorectal cancer (CRC) is a heterogeneous disease that can develop via several pathways. Different CRC subtypes, identified based on tumor markers, have been proposed to reflect these pathways. We evaluated the significance of these previously proposed classifications to survival. METHODS: Participants in the population-based Seattle Colon Cancer Family Registry were diagnosed with invasive CRC from 1998 through 2007 in western Washington State (N = 2706), and followed for survival through 2012. Tumor samples were collected from 2050 participants and classified into 5 subtypes based on combinations of tumor markers: type 1 (microsatellite instability [MSI]-high, CpG island methylator phenotype [CIMP] -positive, positive for BRAF mutation, negative for KRAS mutation); type 2 (microsatellite stable [MSS] or MSI-low, CIMP-positive, positive for BRAF mutation, negative for KRAS mutation); type 3 (MSS or MSI low, non-CIMP, negative for BRAF mutation, positive for KRAS mutation); type 4 (MSS or MSI-low, non-CIMP, negative for mutations in BRAF and KRAS); and type 5 (MSI-high, non-CIMP, negative for mutations in BRAF and KRAS). Multiple imputation was used to impute tumor markers for those missing data on 1-3 markers. We used Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations of subtypes with disease-specific and overall mortality, adjusting for age, sex, body mass, diagnosis year, and smoking history. RESULTS: Compared with participants with type 4 tumors (the most predominant), participants with type 2 tumors had the highest disease-specific mortality (HR = 2.20, 95% CI: 1.47-3.31); subjects with type 3 tumors also had higher disease-specific mortality (HR = 1.32, 95% CI: 1.07-1.63). Subjects with type 5 tumors had the lowest disease-specific mortality (HR = 0.30, 95% CI: 0.14-0.66). Associations with overall mortality were similar to those with disease-specific mortality. CONCLUSIONS: Based on a large, population-based study, CRC subtypes, defined by proposed etiologic pathways, are associated with marked differences in survival. These findings indicate the clinical importance of studies into the molecular heterogeneity of CRC
Immunogenic cell death pathway polymorphisms for predicting oxaliplatin efficacy in metastatic colorectal cancer
Background Immunogenic cell death (ICD) is a tumor cell death involving both innate and adaptive immune responses. Given published findings that oxaliplatin, but not irinotecan, drives ICD, we investigated whether single nucleotide polymorphisms (SNPs) in the ICD pathway are associated with the efficacy of oxaliplatin-based chemotherapy in metastatic colorectal cancer (mCRC). Methods Two randomized clinical trials data were analyzed: discovery cohort, FOLFOX/bevacizumab arm (MAVERICC); validation cohort, FOLFOXIRI/bevacizumab arm (TRIBE); and two control cohorts, FOLFIRI/bevacizumab arms (both trials). Genomic DNA extracted from blood samples was genotyped. Ten SNPs in the ICD pathway were tested for associations with clinical outcomes. Results In total, 648 patients were included. In the discovery cohort, three SNPs were significantly associated with clinical outcomes in univariate analysis: CALR rs1010222 with progression-free survival (G/G vs any A, HR=0.61, 95% CI 0.43-0.88), ANXA1 rs1050305 with overall survival (OS) (A/A vs any G, HR=1.87, 95% CI 1.04-3.35), and LRP1 rs1799986 with OS (C/C vs any T, HR=1.69, 95% CI 1.07-2.70). Multivariate analysis confirmed the trend, but statistical significance was not reached. In the validation cohort, ANXA1 rs1050305, and LRP1 rs1799986 were validated to have the significant associations with clinical outcome. No significant associations of these SNPs were observed in the two control cohorts. Treatment-by-SNP interaction test confirmed the predictive values. Conclusions The predictive utility of ICD-related SNPs for the efficacy of oxaliplatin-based chemotherapy was demonstrated, warranting further validation studies to be translated into personalized treatment strategies using conventional cytotoxic agents in mCRC
Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano
A new International Continental Drilling Program (ICDP) project will drill through the 50-yearoldedifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963–1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions
Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer
<p>Abstract</p> <p>Background</p> <p>Lung cancer is the leading cause of cancer death in men and women in the United States and Western Europe. Over 160,000 Americans die of this disease every year. The five-year survival rate is 15% – significantly lower than that of other major cancers. Early detection is a key factor in increasing lung cancer patient survival. DNA hypermethylation is recognized as an important mechanism for tumor suppressor gene inactivation in cancer and could yield powerful biomarkers for early detection of lung cancer. Here we focused on developing DNA methylation markers for squamous cell carcinoma of the lung. Using the sensitive, high-throughput DNA methylation analysis technique MethyLight, we examined the methylation profile of 42 loci in a collection of 45 squamous cell lung cancer samples and adjacent non-tumor lung tissues from the same patients.</p> <p>Results</p> <p>We identified 22 loci showing significantly higher DNA methylation levels in tumor tissue than adjacent non-tumor lung. Of these, eight showed highly significant hypermethylation in tumor tissue (p < 0.0001): GDNF, MTHFR, OPCML, TNFRSF25, TCF21, PAX8, PTPRN2 and PITX2. Used in combination on our specimen collection, this eight-locus panel showed 95.6% sensitivity and specificity.</p> <p>Conclusion</p> <p>We have identified 22 DNA methylation markers for squamous cell lung cancer, several of which have not previously been reported to be methylated in any type of human cancer. The top eight markers show great promise as a sensitive and specific DNA methylation marker panel for squamous cell lung cancer.</p
Insights into the Pathogenesis of Anaplastic Large-Cell Lymphoma through Genome-wide DNA Methylation Profiling.
Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK-) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK- ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.G.E. was funded by the Austrian Science Foundation (FWF) (P 27616 and V 102). M.R.H. was supported by a L’Oréal for Women in Science grant. S.D.T. receives funding from Bloodwise (formerly Leukaemia and Lymphoma Research). L.K. has been funded by the FWF (P 26011 and P 29251), as well as the MSCA-ITN-2015-ETN ALKATRAS (No. 675712). D.J.W. is a paid consultant for Zymo Research Corporation.This is the final version of the article. It first appeared from Elsevier (Cell Press) via http://dx.doi.org/10.1016/j.celrep.2016.09.01
- …