6 research outputs found
Reverberation Mapping Measurements of Black Hole Masses in Six Local Seyfert Galaxies
We present the final results from a high sampling rate, multi-month,
spectrophotometric reverberation mapping campaign undertaken to obtain either
new or improved Hbeta reverberation lag measurements for several relatively
low-luminosity AGNs. We have reliably measured thetime delay between variations
in the continuum and Hbeta emission line in six local Seyfert 1 galaxies. These
measurements are used to calculate the mass of the supermassive black hole at
the center of each of these AGNs. We place our results in context to the most
current calibration of the broad-line region (BLR) R-L relationship, where our
results remove outliers and reduce the scatter at the low-luminosity end of
this relationship. We also present velocity-resolved Hbeta time delay
measurements for our complete sample, though the clearest velocity-resolved
kinematic signatures have already been published.Comment: 52 pages (AASTeX: 29 pages of text, 8 tables, 7 figures), accepted
for publication in the Astrophysical Journa
A Revised Broad-Line Region Radius and Black Hole Mass for the Narrow-Line Seyfert 1 NGC 4051
We present the first results from a high sampling rate, multi-month
reverberation mapping campaign undertaken primarily at MDM Observatory with
supporting observations from telescopes around the world. The primary goal of
this campaign was to obtain either new or improved Hbeta reverberation lag
measurements for several relatively low luminosity AGNs. We feature results for
NGC 4051 here because, until now, this object has been a significant outlier
from AGN scaling relationships, e.g., it was previously a ~2-3sigma outlier on
the relationship between the broad-line region (BLR) radius and the optical
continuum luminosity - the R_BLR-L relationship. Our new measurements of the
lag time between variations in the continuum and Hbeta emission line made from
spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R_BLR =
1.87 (+0.54 -0.50) light days and black hole mass of M_BH = 1.73 (+0.55 -0.52)
x 10^6 M_sun. This radius is consistent with that expected from the R_BLR-L
relationship, based on the present luminosity of NGC 4051 and the most current
calibration of the relation by Bentz et al. (2009a). We also present a
preliminary look at velocity-resolved Hbeta light curves and time delay
measurements, although we are unable to reconstruct an unambiguous
velocity-resolved reverberation signal.Comment: 38 pages, 7 figures, accepted for publication in ApJ, changes from v1
reflect suggestions from anonymous refere
Disk-Jet Connection in the Radio Galaxy 3C 120
We present the results of extensive multi-frequency monitoring of the radio
galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as
well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of
observation, significant dips in the X-ray light curve are followed by
ejections of bright superluminal knots in the VLBA images. Consistent with
this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the
radio variations. This implies that, in this radio galaxy, the radiative state
of accretion disk plus corona system, where the X-rays are produced, has a
direct effect on the events in the jet, where the radio emission originates.
The X-ray power spectral density of 3C 120 shows a break, with steeper slope at
shorter timescale and the break timescale is commensurate with the mass of the
central black hole based on observations of Seyfert galaxies and black hole
X-ray binaries. These findings provide support for the paradigm that black hole
X-ray binaries and active galactic nuclei are fundamentally similar systems,
with characteristic time and size scales linearly proportional to the mass of
the central black hole. The X-ray and optical variations are strongly
correlated in 3C 120, which implies that the optical emission in this object
arises from the same general region as the X-rays, i.e., in the accretion
disk-corona system. We numerically model multi-wavelength light curves of 3C
120 from such a system with the optical-UV emission produced in the disk and
the X-rays generated by scattering of thermal photons by hot electrons in the
corona. From the comparison of the temporal properties of the model light
curves to that of the observed variability, we constrain the physical size of
the corona and the distances of the emitting regions from the central BH.Comment: Accepted for publication in the Astrophysical Journal. 28 pages, 21
figures, 2 table
Diverse Kinematic Signatures from Reverberation Mapping of the Broad-Line Region in AGNs
A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hβ emission region within the