813 research outputs found

    Pengembangan Usaha Kecil: Pemihakan Setengah Hati

    Full text link
    Buku ini membahas mengenai tinjauan terhadap proses kebijakan pengembagan usaha kecil, dan menelaah struktur ekonomi, perkembangan kelembagaan dan akses

    Superconductivity and Rattling under High Pressure in the beta-Pyrochlore Oxide RbOs2O6

    Full text link
    Rattling-induced superconductivity in the beta-pyrochlore oxide RbOs2O6 is investigated under high pressures up to 6 GPa. Resistivity measurements in a high-quality single crystal show that the superconducting transition temperature Tc increases gradually from 6.3 K at ambient pressure to 8.8 K at 3.5 GPa, surprisingly remains almost constant at 8.8 \pm 0.1 K in a wide pressure range between 3.5 (Po) and 4.8 GPa, and suddenly drops to 6.3 K at Ps = 4.9 GPa, followed by a gradual decrease with further pressure increase. Two anomalies in the temperature dependence of the normal-state resistivity are observed at Po Ps, revealing the presence of two high-pressure phases corresponding to the changes in Tc. The rattling of the Rb ion inside a cage made of Os and O atoms may be slightly and seriously modified in these high-pressure phases that probably have cages of reduced symmetry, respectively, so that electron-rattler interactions that govern the superconducting and transport properties of beta-RbOs2O6 are significantly affected.Comment: arXiv admin note: text overlap with arXiv:1009.035

    Near Horizon of 5D Rotating Black Holes from 2D Perspective

    Get PDF
    We study the CFT dual to five dimensional extremal rotating black holes, by investigating the two dimensional perspective of their near horizon geometry. From two dimensional point of view, we show that both gauge fields, related to the two rotations, appear in the same manner in the asymptotic symmetry and in the associated central charge. We find that, our results are in perfect agreement with the generalization of Kerr/CFT approach to five dimensional extremal rotating black holes.Comment: The last version to appear in the European Physical Journal

    Epidemiological associations between brachycephaly and upper respiratory tract disorders in dogs attending veterinary practices in England

    Get PDF
    Background: Brachycephalic dog breeds are increasingly common. Canine brachycephaly has been associated with upper respiratory tract (URT) disorders but reliable prevalence data remain lacking. Using primary-care veterinary clinical data, this study aimed to report the prevalence and breed-type risk factors for URT disorders in dogs. Results: The sampling frame included 170,812 dogs attending 96 primary-care veterinary clinics participating within the VetCompass Programme. Two hundred dogs were randomly selected from each of three extreme brachycephalic breed types (Bulldog, French Bulldog and Pug) and three common small-to medium sized breed types (moderate brachycephalic: Yorkshire Terrier and non-brachycephalic: Border Terrier and West Highland White Terrier). Information on all URT disorders recorded was extracted from individual patient records. Disorder prevalence was compared between groups using the chi-squared test or Fisher’s test, as appropriate. Risk factor analysis used multivariable logistic regression modelling. During the study, 83 (6.9 %) study dogs died. Extreme brachycephalic dogs (median longevity: 8.6 years, IQR: 2.4-10.8) were significantly younger at death than the moderate and non-brachycephalic group of dogs (median 12.7 years, IQR 11.1-15.0) (P \u3c 0.001). A higher proportion of deaths in extreme brachycephalic breed types were associated with URT disorders (4/24 deaths, 16.7 %) compared with the moderate and non-brachycephalic group (0/59 deaths, 0.0 %) (P = 0.001). The prevalence of having at least one URT disorder in the extreme brachycephalic group was higher (22.0 %, 95 % confidence interval (CI): 18.0-26.0) than in the moderate and non-brachycephalic group (9.7 %, 95 % CI: 7.1-12.3, P \u3c 0.001). The prevalence of URT disorders varied significantly by breed type: Bulldogs 19.5 %, French Bulldogs 20.0 %, Pugs 26.5 %, Border Terriers 9.0 %, West Highland White Terriers 7.0 % and Yorkshire Terriers 13.0 % (P \u3c 0.001). After accounting for the effects of age, bodyweight, sex, neutering and insurance, extreme brachycephalic dogs had 3.5 times (95 % CI: 2.4-5.0, P \u3c 0.001) the odds of at least one URT disorder compared with the moderate and non-brachycephalic group. Conclusions: In summary, this study reports that URT disorders are commonly diagnosed in Bulldog, French Bulldog, Pug, Border Terrier, WHWT and Yorkshire Terrier dogs attending primary-care veterinary practices in England. The three extreme brachycephalic breed types (Bulldog, French Bulldog and Pug) were relatively short-lived and predisposed to URT disorders compared with three other small-to-medium size breed types that are commonly owned (moderate brachycephalic Yorkshire Terrier and non-brachycephalic: Border Terrier and WHWT). Conclusions: In summary, this study reports that URT disorders are commonly diagnosed in Bulldog, French Bulldog, Pug, Border Terrier, WHWT and Yorkshire Terrier dogs attending primary-care veterinary practices in England. The three extreme brachycephalic breed types (Bulldog, French Bulldog and Pug) were relatively short-lived and predisposed to URT disorders compared with three other small-to-medium size breed types that are commonly owned (moderate brachycephalic Yorkshire Terrier and non-brachycephalic: Border Terrier and WHWT)

    Kerr-CFT From Black-Hole Thermodynamics

    Full text link
    We analyze the near-horizon limit of a general black hole with two commuting killing vector fields in the limit of zero temperature. We use black hole thermodynamics methods to relate asymptotic charges of the complete spacetime to those obtained in the near-horizon limit. We then show that some diffeomorphisms do alter asymptotic charges of the full spacetime, even though they are defined in the near horizon limit and, therefore, count black hole states. We show that these conditions are essentially the same as considered in the Kerr/CFT corresponcence. From the algebra constructed from these diffeomorphisms, one can extract its central charge and then obtain the black hole entropy by use of Cardy's formula.Comment: 19 pages, JHEP3, no figures. V2: References added, small typos fixe

    Central Charges in Extreme Black Hole/CFT Correspondence

    Full text link
    The Kerr/CFT correspondence has been recently broadened to the general extremal black holes under the assumption that the central charges from the non-gravitational fields vanish. To confirm this proposal, we derive the expression of the conserved charges in the Einstein-Maxwell-scalar theory with topological terms in four and five dimensions and check that the above assumption was correct. Combining the computed central charge with the expected form of the temperature, the Bekenstein-Hawking entropy of the general extremal black holes in four and five dimensions can be reproduced by using the Cardy formula.Comment: 20 pages, v2:references added, published in JHE

    Microscopic Realization of the Kerr/CFT Correspondence

    Get PDF
    Supersymmetric M/string compactifications to five dimensions contain BPS black string solutions with magnetic graviphoton charge P and near-horizon geometries which are quotients of AdS_3 x S^2. The holographic duals are typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These same 5D compactifications also contain non-BPS but extreme Kerr-Newman black hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2, the near-horizon geometry coincides precisely with the right-moving temperature T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the Kerr/CFT correspondence. Moreover, at linear order away from maximality, one finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution and the associated thermal CFT entropy reproduces the linearly sub-maximal Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a finite-temperature quotient of a warped deformation of the magnetic string geometry. The corresponding dual deformation of the magnetic string CFT potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by Kerr/CFT.Comment: 18 pages, no figure

    Holographic Dual of Linear Dilaton Black Hole in Einstein-Maxwell-Dilaton-Axion Gravity

    Full text link
    Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SL(2, R)L_LĂ—\timesSL(2, R)R_R Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.Comment: 15 pages, no figure, published versio

    Holographic Wilsonian flows and emergent fermions in extremal charged black holes

    Full text link
    We study holographic Wilsonian RG in a general class of asymptotically AdS backgrounds with a U(1) gauge field. We consider free charged Dirac fermions in such a background, and integrate them up to an intermediate radial distance, yielding an equivalent low energy dual field theory. The new ingredient, compared to scalars, involves a `generalized' basis of coherent states which labels a particular half of the fermion components as coordinates or momenta, depending on the choice of quantization (standard or alternative). We apply this technology to explicitly compute RG flows of charged fermionic operators and their composites (double trace operators) in field theories dual to (a) pure AdS and (b) extremal charged black hole geometries. The flow diagrams and fixed points are determined explicitly. In the case of the extremal black hole, the RG flows connect two fixed points at the UV AdS boundary to two fixed points at the IR AdS_2 region. The double trace flow is shown, both numerically and analytically, to develop a pole singularity in the AdS_2 region at low frequency and near the Fermi momentum, which can be traced to the appearance of massless fermion modes on the low energy cut-off surface. The low energy field theory action we derive exactly agrees with the semi-holographic action proposed by Faulkner and Polchinski in arXiv:1001.5049 [hep-th]. In terms of field theory, the holographic version of Wilsonian RG leads to a quantum theory with random sources. In the extremal black hole background the random sources become `light' in the AdS_2 region near the Fermi surface and emerge as new dynamical degrees of freedom.Comment: 37 pages (including 8 pages of appendix), 10 figures and 2 table

    Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides

    Get PDF
    Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave (A1gA_{1g}) symmetry (s±s^\pm). In particular we focus on the role of the hole pocket at the (π,π)(\pi,\pi) point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {\it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic s±s^\pm state. The pocket's contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap
    • …
    corecore