1,052 research outputs found

    Calculation of resonances in the Coulomb three-body system with two disintegration channels in the adiabatic hyperspherical approach

    Full text link
    The method of calculation of the resonance characteristics is developed for the metastable states of the Coulomb three-body (CTB) system with two disintegration channels. The energy dependence of K-matrix in the resonance region is calculated with the use of the stabilization method. Resonance position and partial widths are obtained by fitting the numerically calculated K(E)-matrix with the help of the generalized Breit-Wigner formula.Comment: Latex, 11 pages with 5 figures and 2 table

    Plasma Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices

    Get PDF
    Introduction. PECVD enables fabrication of wide range of advanced materials with various structure such as amorphous, polymorphous, nano-crystalline, nanostructured, microcrystalline etc. and with various electronic properties. The latter can be also changed by different dopingl. PECVD silicon materials are commercially employed in multi-layered PV structures (including ones on flexible substrates). Combining these materials with crystalline silicon active substrate resulted in significant improvement of PCE in hetero junction technology PV structures. Existence of new organic semiconductors (OS) together with understanding of physical properties resulted in fast development of OC PV devicesAim. To consider both PECVD and OS materials and to present description of fabrication, structure and electronic properties for device application.Materials and methods. Devices based on non-crystalline materials, devices based on OS, hybrid devices. PECVD and Spin coating technique was used to deposit materials with tunable properties enabling device engineering possibilities.Results. PECVD and OS materials were analyzed. These materials have different levels of characterization (data volume, interpretation of the results etc.) and of understanding of physics determining device performance. Some examples of these materials in PV including structures with crystalline silicon were considered.Conclusion. Important advantage of both PECVD and OS materials is that fabrication methods are compatible and allow fabrication of great variety of hybrid device structures on crystalline semiconductors. Advantages of such devices are difficult to predict because of lack of data in scientific literature. However a new area in material science and related devices for further exploring and exploiting has appeared.Introduction. PECVD enables fabrication of wide range of advanced materials with various structure such as amorphous, polymorphous, nano-crystalline, nanostructured, microcrystalline etc. and with various electronic properties. The latter can be also changed by different dopingl. PECVD silicon materials are commercially employed in multi-layered PV structures (including ones on flexible substrates). Combining these materials with crystalline silicon active substrate resulted in significant improvement of PCE in hetero junction technology PV structures. Existence of new organic semiconductors (OS) together with understanding of physical properties resulted in fast development of OC PV devices.Aim. To consider both PECVD and OS materials and to present description of fabrication, structure and electronic properties for device application.Materials and methods. Devices based on non-crystalline materials, devices based on OS, hybrid devices. PECVD and Spin coating technique was used to deposit materials with tunable properties enabling device engineering possibilities.Results. PECVD and OS materials were analyzed. These materials have different levels of characterization (data volume, interpretation of the results etc.) and of understanding of physics determining device performance. Some examples of these materials in PV including structures with crystalline silicon were considered.Conclusion. Important advantage of both PECVD and OS materials is that fabrication methods are compatible and allow fabrication of great variety of hybrid device structures on crystalline semiconductors. Advantages of such devices are difficult to predict because of lack of data in scientific literature. However a new area in material science and related devices for further exploring and exploiting has appeared

    Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach

    Get PDF
    In this paper we consider the problem of deriving approximate autonomous dynamics for a number of variables of a dynamical system, which are weakly coupled to the remaining variables. In a previous paper we have used the Ruelle response theory on such a weakly coupled system to construct a surrogate dynamics, such that the expectation value of any observable agrees, up to second order in the coupling strength, to its expectation evaluated on the full dynamics. We show here that such surrogate dynamics agree up to second order to an expansion of the Mori-Zwanzig projected dynamics. This implies that the parametrizations of unresolved processes suited for prediction and for the representation of long term statistical properties are closely related, if one takes into account, in addition to the widely adopted stochastic forcing, the often neglected memory effects.Comment: 14 pages, 1 figur

    Nash equilibrium design in the interaction model of entities in the customs service system

    Full text link
    The urgency of the analyzed issue is due to the importance of the use of economic-mathematical tools in the course of modeling the interaction of the entities in the customs service system that is necessary for the development of foreign economic activity (FEA) of any state. The purpose of the article is to identify effective strategies for the interaction between the participants of foreign trade activities with customs brokers. The leading method to the study of this issue is economic-mathematical modeling, allowing studying the process of making decisions while choosing the strategy of cooperation between the customs broker and his client. Results: the article suggests the mathematical model to optimize the management mechanisms of interaction between enterprises, engaged in foreign trade, and customs dealers. The data of this article may be useful in modeling interaction of the entities in the customs service system using the methods of game theory. The model of “customer - customs broker” is implemented as a bimatrix game. Assuming the noncooperativegame the authors solve the problem of finding Nash equilibrium in mixed strategies. © 2016 Fedorenko et al

    Assessment of the maturity level of the customer relationship management system

    Get PDF
    The article proposes the authors’ method for assessing the maturity of the customer relationship management system of a company. The purpose of the article is a theoretical refinement of the concept of customer relationship management in terms of expanding the conceptual apparatus and defining the stages of the customer-centric transformation process. The achieve the indicated purpose, the following methods were used: systematisation of existing scientific views on the research topic; analysis and refinement of models for quantitative interpretation of customer and expert survey data; identifying trends in competitive market conditions in terms of customer centricity. The topic is relevant due to several factors: competition based on the aggregate value provided is one of the main ways to compete in the market in current circumstances; the conceptual apparatus used today to analyze customer centricity is neither uniform nor sufficient; established scientific vision of customer-centric transformation does not include the understanding of this process’ levels and stages. The authors of the article created a new thesaurus by proposing to introduce certain concepts of customer-centric transformation and maturity of the customer relationship management system. Maturity factors and levels were analyzed. For practical purposes, existing methods of measuring the maturity of a customer relationship management system are studied, practical recommendations aimed at increasing the level of maturity are prepared, and potential risks are identified. It is demonstrated that the maturity of the customer relationship management system is the level of systemic understanding and practical implementation of the principles of customer-centric transformation

    THE INFLUENCE OF MILK-CLOTTING ENZYMES ON THE FUNCTIONAL PROPERTIES OF PIZZA-CHEESES

    Get PDF
    The effect of the type and dose of milk-clotting enzymes (Chy-max® M based on recombinant camel chymosin, Fromase® TL based on Rhizomucor miehei protease) on the physicochemical, functional properties and shelf life of pizza-cheeses was studied. When using a low dose of milk-clotting enzymes (MCE) for milk coagulation (250–1100 IMCU per 100 kg of milk), cheeses were obtained with an increased moisture content (55–57%), excessive acidity (pH 4.8–4.9) and texture defects (incoherent, crumbly, with separation of free moisture). This is due to the formation of a weak curd, which releases moisture poorly during processing. The use of an increased dose of MCE makes it possible to obtain a denser curd, better releasing moisture. Cheese produced with a high dose of milk-clotting enzymes (2000–2800 IMCU per 100 kg of milk) had a lower moisture content (52–53%) and lower acidity (pH 5.0–5.1). The protein matrix is more hydrated in these cheeses, which ensures its better water holding capacity and a more homogeneous and cohesive texture. The use of an increased dose of MCE with a high total proteolytic activity (Fromase) gives undesirable consequences in the form of accelerated proteolysis of cheese mass proteins, rapid loss of functional properties of the cheese, and a decrease in the shelf life of cheese (less than 60 days). Cheese production using an increased dose of MCE with a low level of total proteolytic activity (Chy-max M) allows achieving a low level of proteolysis during cheese ripening and increasing its shelf life

    Joule Heating and Current-Induced Instabilities in Magnetic Nanocontacts

    Full text link
    We consider the electrical current through a magnetic point contact in the limit of a strong inelastic scattering of electrons. In this limit local Joule heating of the contact region plays a decisive role in determining the transport properties of the point contact. We show that if an applied constant bias voltage exceeds a critical value, the stationary state of the system is unstable, and that periodic, non-harmonic oscillations in time of both the electrical current through the contact and the local temperature in the contact region develop spontaneously. Our estimations show that the necessary experimental conditions for observing such oscillations with characteristic frequencies in the range 108÷10910^8 \div 10^9 Hz can easily be met. We also show a possibility to manipulate upon the magnetization direction of a magnetic grain coupled through a point contact to a bulk ferromagnetic by exciting the above-mentioned thermal-electric oscillations.Comment: 9 pages, 6 figures, submitted to Physical Review
    corecore