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Abstract 

Introduction. PECVD enables fabrication of wide range of advanced materials with various structure such as 

amorphous, polymorphous, nano-crystalline, nanostructured, microcrystalline etc. and with various electronic 

properties. The latter can be also changed by different dopingl. PECVD silicon materials are commercially em-

ployed in multi-layered PV structures (including ones on flexible substrates). Combining these materials with 

crystalline silicon active substrate resulted in significant improvement of PCE in hetero junction technology PV 

structures. Existence of new organic semiconductors (OS) together with understanding of physical properties 

resulted in fast development of OC PV devices 

Aim. To consider both PECVD and OS materials and to present description of fabrication, structure and electronic 

properties for device application. 

Materials and methods. Devices based on non-crystalline materials, devices based on OS, hybrid devices. PECVD 

and Spin coating technique was used to deposit materials with tunable properties enabling device engineering 

possibilities. 

Results. PECVD and OS materials were analyzed. These materials have different levels of characterization (data 

volume, interpretation of the results etc.) and of understanding of physics determining device performance. 

Some examples of these materials in PV including structures with crystalline silicon were considered. 

Conclusion. Important advantage of both PECVD and OS materials is that fabrication methods are compatible 

and allow fabrication of great variety of hybrid device structures on crystalline semiconductors. Advantages of 

such devices are difficult to predict because of lack of data in scientific literature. However a new area in material 

science and related devices for further exploring and exploiting has appeared. 
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Introduction. Crystalline semiconductors are princi-

pal materials for devices in modern solid-state electronics. 

Their fabrication technology, structure and electronic 

properties have been extensively studied for years and 

well reported in literature. Recently new classes materials 

have appeared, however, and resulted in new types of de-

vices, which are not possible to realize with crystalline 

semiconductors. One such class of materials is materials 

(thin films) prepared by means of plasma enhanced chem-

ical vapour deposition (PECVD) and another is class of 

organic semiconductors (OS). Logically this classification 

is not accurate because PECVD materials are defined by 

fabrication method, while OS are defined by chemical 

structure. Nevertheless, we use further this classification 

and notification for materials because it is convenient, and 

these terms are known for specialists and widely used in 

literature. 

Both classes present artificial (human created) ma-

terials in contrast to crystalline semiconductors. They 

have very significant advantages versus crystalline 

semiconductors:  

a) structure of them and consequently electronic proper-

ties can be varied in very wide range not limited by bond 

length (angles) and stoichiometry constrains providing 

impressive possibilities for material engineering; 

b) they are fabricated by low temperature technology 

compatible with crystalline semiconductors enabling 

also substrates made of glass, plastics, metal foils etc. 

which could be also flexible; 

c) these materials can be used for large area devices. 

PECVD is rather mature technology and PECVD mate-

rials are commercially used in such important devices as 

displays and solar cells, while OS technology is only at 

initial stage of commercialization. 

Nevertheless, it is important that they both can be real-

ized by industrial methods, which allow scaling up de-

vice production. 

In this paper we consider both PECVD and OS ma-

terials and present a brief description of fabrication, 

structure and electronic properties principal for device 

applications. 

Variation of technological parameters during fabri-

cation of these materials results in significant and well 

controlled changes in electronic properties providing a 

great promise for material and device engineering. Ad-

ditionally technological compatibility of them allows 

design and development of hybrid device structures 

comprising both PECVD and OS materials. We shall use 

mostly our results for illustration and will avoid ex-

tended discussion due to space constraints. 

Experimental. 

Fabrication of PECVD Materials. Chemical va-

pour deposition (CVD) is well developed technique 

based on thermal decomposition of gases resulting in 

formation of radicals (partly decomposed molecules 

with unsaturated chemical bonds) and consequent 

film growth on a substrate. In order to have reasonable 

growth rate substrate temperature should be sufficiently 

high in the range of 6001000 oC making impossible to 

use such substrate as glass. Radicals are principal 

components for the film growth and are created by 

only collisions of molecules with sufficiently high 

kinetic energy, which number depends on tempera-

ture and even at high temperature is still not large. 

Alternatively, plasma of glow discharge can be used 

for creating radicals. This technique is known as 

plasma enhanced chemical vapor deposition 

(PECVD). In this case a reactor can be designed ei-

ther for inductive or capacitive type of discharge. 

The latter is conventionally used in both laboratory 

and industrial equipment. 

It is known that neutrals (molecules, radicals, at-

oms) and charged (ions and electrons) particles ex-

isting plasma. The charged particles are sensitive to 

electric field applied to the capacitive electrodes to 

create the discharge. Both ions and electrons are ac-

celerated in electric field before collisions, but elec-

trons because of lighter mass gain more velocity and 

kinetic energy from electric field. Concentrations of 

charged particles in glow discharge plasma are sig-

nificantly (by factor of 103104) less than those of 

neutrals therefore probability of collisions for 

charged particles are determined by (electron, ion)-

(neutrals) interactions. Between collisions both ion 

and electron move with acceleration determined by 

electric field. For the same time of travelling ion ve-

locity increase (consequently increase of kinetic en-

ergy) is significantly less (due to mass difference) 

than that of electron. Dominating collision ion with 

neutral atom results in effective transfer of kinetic 

energy gained by ion to neutral thus gas temperature 

slightly increases. Behavior of electron is signifi-

cantly different: after 1st acceleration it cannot trans-

fer the gained energy to neutral (because of mass dif-

ference) and continues its travel gaining kinetic en-

ergy until inelastic collision when it transfers its ki-

netic energy into internal one (e.g. in ionization pro-

cess or breaking chemical bond, or exciting core 

electrons in atom etc.). 

Electrical field in discharge results in little in-

crease of gas temperature. While behavior of elec- 
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trons have principal difference related to significantly 

less (by factor of 1800) electron mass. Electron prac-

tically doesnt loss its kinetic energy in elastic colli-

sions with heavy particles (neutrals and ions), and af-

ter a series collisions, an electron continues to in-

crease its kinetic energy, reaching its mean value 

("electron" temperature) in the range of 2…10 eV. 

Thus, electrons in glow discharge have mean energy 

enough to break any molecular bond creating radicals. 

That is why substrate temperature is not of principal im-

portance in PECVD technique. Substrate temperature in 

PECVD fabrication is in the range of RT – 300 oC, mak-

ing possible deposition of materials on glass, metal or 

plastic foils. The latter paves way for flexible large 

area electronics. 

Electric field in PECVD system is formed by ap-

plication of DC, AC, RF or VHF) voltage from power 

source. RF discharge is mostly used. At present 

PECVD technique allows fabrication of devices of 

square meters area (record seems to belong to "Ap-

plied Materials" – 5.2 m2). For the first time continu-

ous multilayered (about 20 layers) device fabrication 

has been realized by PECVD roll-to-roll deposition 

on stainless steel foil by "UNI Solar" [3]. PECVD 

technique is of principal importance (dominating in 

the multibillion markets of displays) for fabrication 

large area displays and occupies significant segment 

in PV devices. The most important advantages of 

PECVD are related to facilities for material engineer-

ing (creation of artificial materials with controlled 

structure and electronic properties) and to continuous 

(or large scale) fabrication of large area devices. 

Fig. 1 shows PECVD installations:  

a) for laboratory research with sample area up to 

150 × 150 mm (from "MVS Inc." USA, located at 

INAOE, Puebla, Mexico); 

b) for industrial scale experiments with sample 

area to 1000 × 1200 mm (KAI-1200 from "Oerlikon", 

Switzerland, located at RDC TFTE, St Petersburg, 

Russian Federation). 

Laboratory installations conventionally comprise 

several chambers ("multi-chamber cluster tool") includ-

ing load–lock and transport chamber that allows fabrica-

tion of multi-layered structures avoiding cross and am-

bient contaminations. Large area systems are usually 

used in modelling processes and prototyping device 

structures for consequent implementation of the results 

obtained in some large-scale production facilities. 

Fabrication of organic materials. The biggest 

advantage of organic materials based on polymer is 

their solution type fabrication processes. In compari-

son to inorganic material deposition methods, which 

usually require high substrate temperature and com-

plex high vacuum process, organic materials deposi-

tion requires only a neutral atmosphere to reduce am-

bient contamination that is usually obtained by nitro-

gen ambient in glovebox systems. Deposition tech-

niques for semiconductor and conductor polymers 

can be divided in: 

1) coating process (spin coating, blade coating, 

spray coating, etc.); 

2) printing process (screen, offset and inkjet 

printing) [1]. 

Spin coating system seems to be dominating tech-

nique to deposit organic materials in research labora-

tories because of its "simplicity". However, other 

methods enabling printing are being developed to 

reach industrial scale such as screen or inkjet printing 

for deposition on flexible substrates and large areas. 

Electronic properties of organic material thin 

films depend on the deposition process conditions de-

termined by such factors as viscosity, diffusivity, vol-

atility and dilution method used to prepare the initial 

 

 

Fig. 1. Photo images of PECVD systems: a  laboratory level multi-chambered cluster tool ("MVSyst. Inc.", USA, located at 

INAOE, Puebla, Mex.; b  system for industrial scale experimenting ("Oerlikon, Switzerland", located at TF TE RC) 

 

a 
 

b 
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chemical solution. Despite the flexibility of fabrica-

tion process of organic materials, it has not been 

found the "best" technique that dominates industry 

preferences. 

Results for devices 

Devices based on PECVD materials. Possibility of 

doping in PECVD films pioneered by P. Le Comber, W. 

Spear [2] resulted in development of PV devices 

firstly with Schottky barrier then with pin junc-

tions. Most developed devices are triple junction from 

"Uni-Solar" [3] and "micromorph" [4]. 

Let us consider two representatives of PV devices 

based on PECVD materials. The first is triple tandem fab-

ricated by means of roll-to roll process on stainless steel 

substrate. The structure and the fabrication technology 

have been developed by "Uni Solar" [3]. It comprises 9 

PECVD semiconductor layers forming 3 serially con-

nected pin junctions with a-SiH and a-SiGe:H as in-

trinsic semiconductors, semi- transparent frontal electrode 

(made of indium tin oxide ITO), conducting grid electrode 

to improve current collection and some additional layers. 

Three pin junctions are formed with specially devel-

oped intrinsic a-Si:H, a-SiGe:H films with optical gaps 

and thicknesses of the films designed to optimize opti-

cal absorption in a wider wavelength range than that is 

for one semiconductor thus improving photon absorp-

tion and photo-carrier collection. The optimization 

also includes adjustment of absorption and thick-

nesses in such way that each pin junction collecting 

its part of solar spectra should generate the same cur-

rent otherwise mismatching would create losses and 

reducing efficiency. The best power conversion effi-

ciency (PCE) achieved (certified) was PCE = 13 % [3] 

for module area about 1 m2. 

Another PV structure developed for commercial ap-

plication is called "micromorph" structure [4]. The struc-

ture comprises two PECVD pin junctions with amor-

phous a-Si:H and microcrystalline silicon mk-Si:H. Be-

cause of difference in optical band gap (Eg = 1.75 eV for 

a-Si:H and Eg = 1.1 eV for mk-Si:H the structure pro-

vides collection of both visible part of spectra and 

substantial part of NIR spectrum resulting in increase 

of photocurrent and efficiency. In micromorph de-

vices, optical optimization of frontal part and rear 

contact has been applied for effective light trapping 

and better harvesting penetrated photons. The micro-

morph structures have been reported with double (one 

junction with mk-Si:H) and triple (two junctions with 

mk-Si:H) junctions with stabilized efficiency 11.2 % 

and 12 %, respectively [4]. 

Devices based on organic materials. Organic 

photovoltaic (OPV) solar cell based on solvable com-

pounds, predominantly polymers but most recently 

also small molecules are increasingly being investi-

gated. This technology promises theoretically low-

cost printable PV devices on flexible substrates. 

The main difference in function between organic 

and inorganic active layer is related to creation of ra-

ther stable exciton by absorbed photon in organic mo-

lecular or polymer absorber in organic photovoltaic 

(OPV) device. The diffusion length of excitons is typ-

ically the order of 10 nm, i. e. around tenth of the 

thickness of the active layer required to absorb signif-

icant proportion of the incident light. As a result, the 

majority of the photo-generated excitons in a sand-

wich OPV device decays (recombines) before their 

collection and does not contribute into current in an 

external circuit [5, 6]. In order to separate charges of 

exciton converting them in mobile ones the funda-

mental bulk. As a heterojunction (BHJ) concept has 

been developed. It involves organic material compo-

sition with the self-assembly of nanoscale heterojunc-

tions (micro heterojunctions) created by spontaneous 

phase separation of the donor-like (polymer) and ac-

ceptor-like (e. g. fullerene) components. Because of 

this spontaneous phase separation, charge – separat-

ing nano-scaled hetero-junctions are formed through-

out the bulk of the active layer. In otherwords the 

charges of the excitons with small diffusion lengths 

are separated by the local electric fields of the micro 

heterojunctions. This mechanism provides separation 

of charges (destruction) of exciton and appearance of 

mobile charge carriers. However, external electric 

field for transportation of the separated charges is re-

quired and provided by two electrodes with different 

work function. 

After the introduction of the BHJ concept, pio-

neering researchers started to recognize the im-

portance of precise control of morphology because 

the device performance is extremely sensitive to the 

nano morphology of the BHJ film induced by sponta-

neous phase separation of the D:A blends [79] A va-

riety of processing techniques, such as thermal/sol-

vent annealing and processing additives, [1012] 

have been devised, and those attempts have enabled 

us rather fine-tuning 3D nanostructured BHJ mor-

phologies. For further optimization of organic semi-

conductors, research interests have moved to interface 

engineering, i. e., inserting interfacial layers (IFLs) 

between the BHJ film and the electrodes [1317]. By 

developing new organic/inorganic interfacial materials or 
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introducing alreadydeveloped materials used in other re-

search fields, substantial studies have demonstrated that 

those materials function as charge-transporting/blocking 

layers, surface modifiers, and optical spacers, which in-

crease the conversion efficiency of devices with organic 

semiconductors. More significant advances have been 

achieved by developing new device architectures 

[1822]. For example, multi-junction structures, in 

which two or more sub-cells with different absorption 

regions are vertically stacked and interconnected in se-

ries or parallel, have allowed a broad solar spectrum to 

be harvested. Furthermore, the development of various 

donor materials with different bandgaps and fuller-

ene/non-fullerene acceptors has also been devoted to 

substantially improving the efficiency of devices with 

organic semiconductors [2328]. The combination of 

new material designs/syntheses and the previously men-

tioned methods have led to remarkable efficiency en-

hancements, reaching values over PCE > 11 % [22, 29]. 

Considering that BHJ organic semiconductors have 

impressive advantages, such as low-cost printability 

and extreme mechanical flexibility, when compared to 

those of amorphous silicon solar cells, the efficiency 

PCE > 11 % represents an acceptable efficiency level 

for flexible solar cells and further commercialization of 

devices with organic semiconductors [30]. 

Hybrid devices based on PECVD-Polymer mate-

rials. Organic-inorganic hybrid solar cells are an alter-

native to pure organic or inorganic PV devices.  

Fig. 2 shows an example of a new concept of hybrid pho-

tovoltaic structure based on a-Si:H and Polymer organic 

conductor ITO/ PEDOT:PSS/ (i) a-Si:H/ (n) a-Si:H. 

Structure was fabricated on Indium Tin Oxide (ITO) 

coated glass substrates. PEDOT:PSS precursor was 

prepared with 1:6 weight ratio. Mixed solution was fil-

tered with a PVDF filter with pore sizes of 0.45 µm. 

The PEDOT:PSS layer was deposited in N2 ambient by 

spin coating. The PEDOT:PSS films with thickness  

of 45 nm was obtained from 45 µL of solution depos-

ited at rotation speed of 2500 rpm. Inorganic layers 

were deposited using a cluster multi chamber PECVD 

system with RF discharge at frequency f  = 13.56 MHz. 

The intrinsic a-Si:H layer was deposited from an  

10 % SiH4 + 90 % H2 gas mixture at pressure  

P = 550 mTorr. The 20 nm thick n-layers were de-

posited using 0.01 % PH3 + 9.9 % SiH4 + 90.09 % H2 

gas mixtures at pressure P = 550 mTorr. Finally, the  

6 nm thick p-layer was deposited using the 

0.26 % B2H6 + 21 % CH4 + 53 % SiH4 + 25.74 % H2 

mixture at pressure P = 690 mTorr. The deposition 

temperature was fixed at Td = 160 С  and power at 

W = 3 Watt. The deposition of the top contacts was 

performed by sputtering of Ag through a metal 

shadow mask with an area of 0.09 cm2. 

The cross-section scanning electron microscopy 

(SEM) image (in secondary electron regime) of the 

hybrid photovoltaic structure on flexible substrate is 

shown in Fig. 3. AZO layer has columnar structure 

and PEDOT:PSS layer, deposited on AZO is rather in-

homogeneous at the PEDOT:PSS/a-Si interface. 

However, PEDOT layer "heals" rather rough AZO 

surface, preparing smooth and planar surface for the 

deposition of amorphous silicon film. It is interesting 

to note, that the substrate defect (crack) is translated 

through the AZO layer and this is interrupted due to 

the organic polymer layer. 

 

Fig. 2. Hybrid photovoltaic structure based on a-Si:H and 

Polymer organic conductor ITO/ PEDOT:PSS/ (i) a-Si:H/ (n) 

a-Si:H. PEDOT:PSS film deposited by spin coating (45 nm) 

45 µL. Inorganic layers deposited by multi chamber PECVD 

system with RF PECVD 

Rear electrode (Ag) 

(n) a-Si:H 

(i) a-Si:H 

(p) PEDOT:PSS 

Light 

 

Contact 

Frontal electrode 

(ITO) 
 

Fig. 3. Cross-section scanning electron microscopy (SEM) 

image (from secondary electron regime) of the hybrid 

photovoltaic structure on flexible substrate 

(PEN/AZO/PEDOT:PSS/ (i) a-Si:H/ (n) a-Si:H/Ag stack) 
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The electronic characteristics of PEDOT:PSS can 

be modified by dilution method. Thus, performance 

characteristics of devices can be control by modifica-

tion of PEDOT:PSS film. Fig. 4 shows the J(V) char-

acteristics and performance characteristics (Voc and Jsc) 

of hybrid ITO/ PEDOT:PSS/ (i) a-Si:H/ (n) a-Si:H pho-

tovoltaic (PV) structures incorporating the post-depo-

sition isopropanol (IPA) dipped PEDOT:PSS films. 

Structure with PEDOT:PSS film with 45 min of IPA 

dipping time showed the best performance with Jsc = 

15.29 mA/cm2, Voc = 0.61 V, FF = 36.5 % and  

PCE = 3.40 %. Fig. 4, b displays the values of Jsc and 

Voc for untreated and IPA dipped samples as function 

of dipping time. The values of Jsc show an increase 

from 9.52 mA/cm2 for the untreated PEDOT:PSS 

structure to 15 mA/cm2 for the IPA dipped PE-

DOT:PSS structure with 45 dipping time, this may be 

due to the decrease of the resistivity of their IPA dipped 

PEDOT:PSS films. It is interesting to note some the 

maximum values such as Jsc ~ 15 mA/cm2 obtained in 

these structures. The values are very similar to those in 

the best pin structures based on a-Si:H or even better 

[17]. However, the shunt and serial resistances in the 

PEDOT:PSS/ (i) a-Si:H structures are the main issue to 

be solved in order to increase the FF values above 50 

%. The substitution of the p-type a-Si:H:B by a PE-

DOT:PSS layer results in improvement of frontal inter-

face properties and simplification of fabrication pro-

cess of pin structures based on amorphous silicon. 

Hybrid devices using crystalline semiconduc-

tors, non-crystalline PECVD and organic materi-

als (HJTOS structures). Combination of well-devel-

oped crystalline silicon (c-Si) solar cell with PECVD 

layers has provided substantial improvement in effi-

ciency from 17 to 24 % [31]. The structure is notified 

as hetero-junction transitions (HJT) structure. There-

fore, in this section we consider an example of such 

HJT device structure comprising both crystalline sem-

iconductor and PECVD layers schematically shown 

in Fig. 5, a. 

The base of the structure is n-doped c-Si wafer. On 

the top of the wafer intrinsic a-SixC1-x:H film (with 

optimized x), then intrinsic a-Si:H film are deposited. 

Above that it is p-doped microcrystalline silicon and 

then transparent conductive oxide (ITO) covered fi-

nally with electrode grid. Thus some junctions:  

a) between p-mk-Si:H and a-Si:H film;  

b) between a-Si:H and c-Si (because of optical 

gap difference) are created forming electric field on 

frontal side that improves collection of charge carriers 

generated by short wavelength photons.  

On the rare (back) side a-Si:H and n-doped mk-Si:H 

forms junction with built in electric field improving 

transport of photo-generated charges and also contribute 

to photocurrent because of carrier photo-generation due to 

absorption of long wave length photons. Thus, better har-

vesting of both short wave length (on the frontal side) and 

long wave length on rear side, together with improving 

charge collection, results in significant improvement inef-

ficiency of up to PCE = 26 % [32]. Here it is worth to no-

ticed that p-mk-Si:H, a-Si:H, a-SixC1-x:H, n-mk-Si:H 

layers are deposited by PE CVD technique. An example 

of current-voltage characteristics J(U) under sun illumi-

nation is presented in Fig. 6, a. As seen the HJT structure 

shows short circuit current density Jsc = 36 mA/cm2 and 

excellent current collection up to voltage U ≈ 0.6 V. How-

 

 

Fig. 4. Current density – voltage J(V) characteristics and Jsc and Voc parameters extracted from J  V curves of hybrid solar  

cells structures for different dipping time in isopropyl alcohol: a  J(V) characteristics under AM 1.5 solar illumination;  

b  Jsc and Voc parameters extracted from J(V) curves as a function of dipping time in isopropyl alcohol 
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ever, it would be of interest to study tandem structure con-

sisting of both HJT (bottom junction) and hybrid hnip 

structure (top junction) based on PE CVD and organic 

films. J(V) characteristics measured for these two junc-

tions (in tandem) and also for integral tandem structure are 

shown in Fig. 6, b. The lower JSC and VOC values observed 

in the HJT structure incorporated in the tandem are related 

to filtering incident light by top side junction.  

Fig. 7, a represents spectral dependence of external 

quantum efficiency (EQE, measured in a. u.) for the 

same sample of HJT solar cell (see structure in Fig. 5, a). 

This graph demonstrates effective harvesting of pho-

tons by the structure in the range of wavelength from 

λ ≈ 450 nm to 1100 nm (practically entire visible and 

partly NIR part of sun spectrum). 

Better shortwave response has been reported in 

hybrid structures with organic semiconductors in 

frontal part of the device structure [16]. Therefore, it 

would be of interest fabricate tandem structure with 

top junction with organic semiconductors. An exam-

ple of cross-section diagram for such structure is pre-

sented in Fig. 5, b. Bottom junction is reproduced HJT 

structure (Fig. 5, a), on the top of which hybrid junc-

tion is placed. The latter comprises glass substrate, 

transparent conductive layer (aluminium doped zinc 

oxide, AZO), n-type a-Si:H, intrinsic a-Si:H, p-type 

organic semiconductor PEDOT:PSS, and second 

transparent conductive oxide (AZO). We could expect 

better current collection for short wavelengths, be-

cause frontal built-in electric field is determined by 

the interface (PEDOT:PSS)-(i-a-Si:). Current-voltage 

 

 

Fig. 6. Current density – voltage characteristics J(V) 

measured under sun illumination: a  for only HJT* 

structure; b  in the integral tandem structure, which 

consists of bottom HJT junction and top h-nip junction; in 

the tandem J(V) characteristics were measured separately 

for h-nip top junction providing VOC = 0.495 V,  

JSC = 15.2 mA/cm2, for HJT* bottom junction providing 

VOC = 0.19 V, JSC = 11.2 mA/cm2 and for the integral 

tandem providing VOC = 0.665 V, JSC = 13 mA/cm2 
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Fig. 5. Cross sectional view of HJT device with crystalline 

silicon: a  PECVD materials; b  HJT with OS incorporated 
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characteristics I(V) of this structures represented in 

Fig. 6, b are measured for bottom HJT junction, top 

hybrid junction and tandem. The structure has not 

been optimized to achieve high current therefore Jsc is 

significantly less, mostly because the top junction 

works as optical filter, however both the junctions 

demonstrate their functions and open circuit voltage 

is equal to sum both junctions. Spectral characteristics 

of the tandem are shown in Fig. 7, b, one can see that 

HJT OS tandem demonstrate better response in the 

range of λ = 300…450 nm. It should be noted also 

that fabrication of the tandem demonstrates compati-

bility of fabrication processes for crystalline silicon, 

PECVD materials and organic semiconductors. 

Outlook. In this paper we have briefly described 

and analyzed two classes of materials: PECVD and 

organic semiconductors. These both are artificial ma-

terials with impressive possibilities for material engi-

neering. However, they have different level of both 

characterization (data volume, interpretation of the re-

sults etc.) and understanding of physical processes de-

termining device performance. We have also consid-

ered some examples of these materials in photovoltaic 

devices in different combinations including structures 

with crystalline silicon. 

A very important advantage of both PECVD and 

organic materials is that technologies of their fabrica-

tion are compatible and allow a fabrication of hybrid 

device structures on crystalline semiconductors (e.g. 

on crystalline silicon). This paves the way for a great 

variety of hybrid device structures. At present ad-

vantages of such devices are difficult to predict be-

cause of shortage of data reported in scientific litera-

ture, but new territory in material science and related 

devices has definitely appeared for further exploring 

and exploiting. 
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