175 research outputs found

    Nowcast model for low‐energy electrons in the inner magnetosphere

    Full text link
    We present the nowcast model for low‐energy (<200 keV) electrons in the inner magnetosphere, which is the version of the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) for electrons. Low‐energy electron fluxes are very important to specify when hazardous satellite surface‐charging phenomena are considered. The presented model provides the low‐energy electron flux at all L shells and at all satellite orbits, when necessary. The model is driven by the real‐time solar wind and interplanetary magnetic field (IMF) parameters with 1 h time shift for propagation to the Earth's magnetopause and by the real time Dst index. Real‐time geostationary GOES 13 or GOES 15 (whenever each is available) data on electron fluxes in three energies, such as 40 keV, 75 keV, and 150 keV, are used for comparison and validation of IMPTAM running online. On average, the model provides quite reasonable agreement with the data; the basic level of the observed fluxes is reproduced. The best agreement between the modeled and the observed fluxes are found for <100 keV electrons. At the same time, not all the peaks and dropouts in the observed electron fluxes are reproduced. For 150 keV electrons, the modeled fluxes are often smaller than the observed ones by an order of magnitude. The normalized root‐mean‐square deviation is found to range from 0.015 to 0.0324. Though these metrics are buoyed by large standard deviations, owing to the dynamic nature of the fluxes, they demonstrate that IMPTAM, on average, predicts the observed fluxes satisfactorily. The computed binary event tables for predicting high flux values within each 1 h window reveal reasonable hit rates being 0.660–0.318 for flux thresholds of 5 ·104–2 ·105 cm−2 s−1 sr−1 keV−1 for 40 keV electrons, 0.739–0.367 for flux thresholds of 3 ·104–1 ·105 cm−2 s−1 sr−1 keV−1 for 75 keV electrons, and 0.485–0.438 for flux thresholds of 3 ·103–3.5 ·103 cm−2 s−1 sr−1 keV−1 for 150 keV electrons but rather small Heidke Skill Scores (0.17 and below). This is the first attempt to model low‐energy electrons in real time at 10 min resolution. The output of this model can serve as an input of electron seed population for real‐time higher‐energy radiation belt modeling.Key PointsNowcast model for low‐energy electronsOnline near‐real‐time comparison to GOES MAGED dataFirst successful model for low‐energy electrons in real timePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110719/1/swe20196.pd

    A Quantitative Analysis of the Available Multicolor Photometry for Rapidly Pulsating Hot B Subdwarfs

    Get PDF
    We present a quantitative and homogeneous analysis of the broadband multicolor photometric data sets gathered so far on rapidly pulsating hot B subdwarf stars. This concerns seven distinct data sets related to six different stars. Our analysis is carried out within the theoretical framework developed by Randall et al., which includes full nonadiabatic effects. The goal of this analysis is partial mode identification, i.e., the determination of the degree index l of each of the observed pulsation modes. We assume possible values of l from 0 to 5 in our calculations. For each target star, we compute a specific model atmosphere and a specific pulsation model using estimates of the atmospheric parameters coming from time-averaged optical spectroscopy. For every assumed value of l, we use a formal chi-squared approach to model the observed amplitude-wavelength distribution of each mode, and we compute a quality-of-fit Q probability to quantify the derived fit and to discriminate objectively between the various solutions. We find that no completely convincing and unambiguous l identification is possible on the basis of the available data, although partial mode discrimination has been reached for 25 out of the 41 modes studied. A brief statistical study of these results suggests that a majority of the modes must have l values of 0, 1, and 2, but also that modes with l = 4 could very well be present while modes with l = 3 appear to be rarer. This is in line with recent results showing that l = 4 modes in rapidly pulsating B subdwarfs have a higher visibility in the optical domain than modes with l = 3. Although somewhat disappointing in terms of mode discrimination, our results still suggest that the full potential of multicolor photometry for l identification in pulsating subdwarfs is within reach.Comment: 59 pages, 18 figures, accepted for publication in the Astrophysical Journal Supplement Serie

    Extreme internal charging currents in medium Earth orbit: Analysis of SURF plate currents on Giove-A

    Get PDF
    Relativistic electrons can penetrate spacecraft shielding and can damage satellite components. Spacecraft in medium Earth orbit pass through the heart of the outer radiation belt and may be exposed to large fluxes of relativistic electrons, particularly during extreme space weather events. In this study we perform an extreme value analysis of the daily average internal charging currents at three different shielding depths in medium Earth orbit as a function of L∗ and along the orbit path. We use data from the SURF instrument on board the European Space Agency's Giove-A spacecraft from December 2005 to January 2016. The top, middle, and bottom plates of this instrument respond to electrons with energies >500 keV, >700 keV, and >1.1 MeV, respectively. The 1 in 10 year daily average top plate current decreases with increasing L∗ ranging from 1.0 pA cm−2 at L∗=4.75 to 0.03 pA cm−2 at L∗=7.0. The 1 in 100 year daily average top plate current is a factor of 1.2 to 1.8 larger than the corresponding 1 in 10 year current. The 1 in 10 year daily average middle and bottom plate currents also decrease with increasing L∗ ranging from 0.4 pA cm−2 at L∗=4.75 to 0.01 pA cm−2 at L∗=7.0. The 1 in 100 year daily average middle and bottom plate currents are a factor of 1.2 to 2.7 larger than the corresponding 1 in 10 year currents. Averaged along the orbit path the 1 in 10 year daily average top, middle, and bottom plate currents are 0.22, 0.094, and 0.094 pA cm−2, respectively

    A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Get PDF
    The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2) numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay) of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events) associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50%). This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50%, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter "Probability of Detection, yes" (PODy) which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed), yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The statistical results obtained through detailed analysis of the available data provided insights into how changing circumstances on the Sun and in interplanetary space can affect the performance of the model. Since shock arrival predictions are widely utilized in making commercially significant decisions re. protecting space assets, the present detailed archival studies can be useful in future operational decision making during solar cycle 24. It would be of added value in this context to use Briggs-Rupert methodology to estimate the cost to an operator of acting on an incorrect forecast

    SPB stars in the open SMC cluster NGC 371

    Full text link
    Pulsation in beta Cep and SPB stars are driven by the kappa mechanism which depends critically on the metallicity. It has therefore been suggested that beta Cep and SPB stars should be rare in the Magellanic Clouds which have lower metallicities than the solar neighborhood. To test this prediction we have observed the open SMC cluster NGC 371 for 12 nights in order to search for beta Cep and SPB stars. Surprisingly, we find 29 short-period B-type variables in the upper part of the main sequence, many of which are probably SPB stars. This result indicates that pulsation is still driven by the kappa mechanism even in low metallicity environments. All the identified variables have periods longer than the fundamental radial period which means that they cannot be beta Cep stars. Within an amplitude detection limit of 5 mmag no stars in the top of the HR-diagram show variability with periods shorter than the fundamental radial period. So if beta Cep stars are present in the cluster they oscillate with amplitudes below 5 mmag, which is significantly lower than the mean amplitude of beta Cep stars in the Galaxy. We see evidence that multimode pulsation is more common in the upper part of the main sequence than in the lower. We have also identified 5 eclipsing binaries and 3 periodic pulsating Be stars in the cluster field.Comment: 8 pages, 11 figures. Accepted for publication in MNRA

    Self-trapped electrons and holes in PbBr2_2 crystals

    Get PDF
    We have directly observed self-trapped electrons and holes in PbBr2_{2} crystals with electron-spin-resonance (ESR) technique. The self-trapped states are induced below 8 K by two-photon interband excitation with pulsed 120-fs-width laser light at 3.10 eV. Spin-Hamiltonian analyses of the ESR signals have revealed that the self-trapping electron centers are the dimer molecules of Pb2_23+^{3+} along the crystallographic a axis and the self-trapping hole centers are those of Br2_2−^- with two possible configurations in the unit cell of the crystal. Thermal stability of the self-trapped electrons and holes suggests that both of them are related to the blue-green luminescence band at 2.55 eV coming from recombination of spatially separated electron-hole pairs.Comment: 8 pages (7 figures, 2 tables), ReVTEX; revised the text and figures 1, 4, and

    Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing

    Get PDF
    A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at −35.4°C with a 10 MeV equivalent proton fluence of 5.0 × 108 protons centerdot cm−2. The CCD236 is a large area (4.4 cm2) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation

    Photometric studies of three multiperiodic Beta Cephei stars: Beta CMa, 15 CMa and KZ Mus

    Full text link
    We have carried out single and multi-site photometry of the three Beta Cephei stars Beta and 15 CMa as well as KZ Mus. For the two stars in CMa, we obtained 270 h of measurement in the Stromgren uvy and Johnson V filters, while 150 h of time-resolved Stromgren uvy photometry was acquired for KZ Mus. All three stars are multi-periodic variables, with three (Beta CMa) and four (15 CMa, KZ Mus) independent pulsation modes. Two of the mode frequencies of 15 CMa are new discoveries and one of the known modes showed amplitude variations over the last 33 years. Taken together, this explains the star's diverse behaviour reported in the literature fully. Mode identification by means of the amplitude ratios in the different passbands suggests one radial mode for each star. In addition, Beta CMa has a dominant l=2 mode while its third mode is nonradial with unknown l. The nonradial modes of 15 CMa, which are l <= 3, form an almost equally split triplet that, if physical, would imply that we see the star under an inclination angle larger than 55 degrees. The strongest nonradial mode of KZ Mus is l=2, followed by the radial mode and a dipole mode. Its weakest known mode is nonradial with unknown l, confirming previous mode identifications for the star's pulsations. The phased light curve for the strongest mode of 15 CMa has a descending branch steeper than the rising branch. A stillstand phenomenon during the rise to maximum light is indicated. Given the low photometric amplitude of this nonradial mode this is at first sight surprising, but it can be explained by the mode's aspect angle.Comment: 12 pages, 11 figure
    • 

    corecore