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ABSTRACT: A number of studies have demonstrated that a room temperature proton irradiation 

may not be sufficient to provide an accurate estimation of the impact of the space radiation 

environment on detector performance. This is a result of the relationship between defect 

mobility and temperature, causing the performance to vary subject to the temperature history of 

the device from the point at which it was irradiated. Results measured using Charge Coupled 

Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when 

the device was irradiated at a cryogenic temperature, more appropriate considering the operating 

conditions in space, impacting the prediction of in-flight performance. This paper describes the 

cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device 

(SCD) CCD236 irradiated at -35.4 C with a 10 MeV equivalent proton fluence of  

5.0×108 protons.cm-2. The CCD236 is a large area (4.4 cm2) X-ray detector that will be flown 

on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the 

Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. 

The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading 

to suppression of the surface component of the dark current and allowing the detector to be 

operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent 

choice to test and demonstrate the variation in the impact of irradiation at cryogenic 

temperatures in comparison to a more typical room temperature irradiation.  
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1. Introduction 

The reduction in performance of imaging and X-ray sensitive devices used in space, as a result 

of proton damage from the space radiation environment, has a large impact on technology 

selection and the desired operating conditions. To ensure optimum operating conditions and 

technology are selected it is prudent to perform a radiation damage assessment [1-4], typically 

starting with an assessment of the environment, followed by a characterisation of the devices 

available for use. The radiation damage characterisation will then allow the identification of the 

ideal operating conditions, where the impact of dark current, random telegraph signals and 

Charge Transfer Inefficiency (CTI), for example, are minimised based on the selection of 

temperature and readout speed. The recommendations made based on these findings impact the 

power (readout speed, cooling requirements) and mass requirements (shielding, increased 

radiator area) the detector places on the mission, often requiring a compromise to ensure 

budgets are not overly strained.  

A typical radiation damage study irradiates multiple devices to multiple proton fluences at 

room temperature, with the irradiation performed at a facility with a suitable proton beam. Once 

the devices are returned they are cooled to an appropriate operating temperature and undergo an 

electro-optical characterisation to enable a recommendation on in-flight operation. However, a 

number of studies [5-13] have demonstrated that the post-irradiation detector performance is 

dependent on the temperature of the device during the irradiation and the temperature history of 

the device from the point at which it was irradiated. Therefore irradiations performed at room 

temperature may not be sufficient to demonstrate confidence in mitigation strategies as they fail 

to identify the impact of defect creation, as a result of annealing, before the device can be 

cooled for analysis. Only performing irradiations at room temperature irradiation could result in 

the selection of a clocking scheme susceptible to a charge trapping defect which annealed before 

the characterisation could be performed. The annealing of defects also complicates the 

identification of the often desired normalization factor to convert room temperature irradiation 

results into their cold equivalent.  
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The increased complexity of a cryogenic irradiation makes them prohibitive to perform on 

a large scale, comparable to that used when performing room temperature irradiations. This 

raises the need for a method to limit the impact of some of these issues by allowing for multiple 

irradiation levels to be performed on one device and a significant amount of testing to be 

performed at the irradiation facility within a short space of time.  

This paper will discuss the proton irradiation of an e2v technologies Swept Charge Device 

(SCD), CCD236, performed at -35.4 C and the subsequent change in detector performance 

after the  device was held at room temperature for a period of 1, 7, 12, 16.5 and 82 days after the 

irradiation. The dark current, energy resolution and CTI are reported, and a comparison is made 

to a previous CCD236 irradiation performed at room temperature. The irradiation used test 

equipment developed for a European Space Agency (ESA) funded study into the radiation 

damage effects on a 1k by 4k 12 m pixel p-channel CCD204 [14] and in the future the 4k by 

4k 12 m pixel n-channel Euclid Charge Coupled Device (CCD). The advantage of using the 

SCD over a conventional CCD design is that it can be operated at warmer temperatures, making 

it an excellent choice to test the facility by avoiding the need for extensive time cooling and 

heating. 

2. A Brief History of Cryogenic Irradiations 

Until 2003 irradiations using CCDs had only been performed at room temperature [5], however 

the results from the CCDs used in the Wide Field Camera (WFC) two demonstrated a fixed 

increase in bright defect concentrations that could not be annealed at around 20 C but also a 

population that could [13]. This indicated the creation of two distinct dark current generating 

defects, one of which required a temperature greater than 20 C to anneal. Ground based studies 

to investigate this affect irradiated a CCD at -84 C, the number of bright defects were then 

monitored as the CCD was warmed in stages up to 30 C [5-6]. The annealing of bright defects 

at room temperature has been identified during a number of other studies using both CCDs  

[9-10] and a complementary metal oxide semiconductor imaging sensors (CIS) [11]. It is 

interesting to note that a study performed using a CCD undergoing an electron irradiation at  

-85 C monitored the devices performance for a period of 8.5 hours after the irradiation and 

recorded significant short term annealing of bright defects during this period of time [12].  

Work performed on the CCDs used in the ESA Gaia spacecraft, for stellar astrometry, used 

an alpha source to perform the irradiation at -135 C and compared the results to a device 

irradiated at room temperature using protons [9]. The study found the CTI to have decreased 

after a 26.5 hour room temperature anneal, leading to a factor of 1.5 to 2 in the uncertainty in 

the CTI measurements performed at room temperature. Different defects were found to anneal 

by different amounts leading to the recommendation that if accurate predictions to cover the full 

range of charge trapping defects are required, as in the case of Euclid for example, a low 

temperature irradiation should be performed. This study was built upon in 2010 [10] when the 

damage from proton irradiations performed at room temperature and -135 C were compared, 

identifying a number of subtle differences in different defect concentrations impacting the CTI. 

The impact of defect mobility on CTI has been investigated in detail for the CCDs used in 

the Chandra X-ray observatory Advanced CCD Imaging Spectrometer [7-8]. Following the 

exposure to low energy protons the CCDs onboard Chandra were warmed to between 20 and  

30 C for a period of 8 hours, this anneal resulted in a 35% increase in CTI when measured 

using the onboard 55Fe source [7]. Both vacancies and silicon interstitials (Si) are highly mobile 
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at temperatures below -100 C, allowing them to form stable defects with impurities in the 

silicon lattice leading to the formation of defects which impact the CCDs CTI. The most well-

known defects which impact the operation of n-channel CCDs, the E-centre (phosphorus-

vacancy), J-centre (divancancy) and A-centre (oxygen-vacancy), are stable below 150 C and so 

could not be the cause of the observed change in CTI. The silicon used to fabricate the CCDs 

contained a significant amount of carbon, therefore during the irradiation the Si can exchange 

positions with a carbon atom to create a carbon interstitial (Ci). At -100 C Ci’s are not mobile, 

however at 30 C they are now able to form metastable defects with phosphorus and carbon 

atoms in the lattice, forming Ci-Ps and Ci-Cs defects both of which create energy levels which 

could have impacted the CTI of the Chandra CCDs. 

3. The Swept Charge Device (SCD) 

The CCD236 is a large area (4.4 cm2) X-ray detector which is read out continually in order to 

benefit from intrinsic dither mode clocking, suppressing the surface component of dark current. 

This allows the detector to be operated at warmer temperatures than a conventional CCD, 

making it an excellent choice to test the facility without the need for extensive time cooling and 

heating the device under test. In normal operation each output sample includes samples from all 

“pixels” in the device, so bright defects are imperceptible, and have no deleterious effect on 

performance until they increase mean dark signal to a level at which it degrades spectral 

resolution. The column isolation of the SCD are arranged in a perpendicular structure, with  

100 µm square “pixels”, leading to an effective increase in detector area during the first 120 

clock doublets required to readout the entire device and producing the characteristic triangular 

dark current profile of a SCD. This dark current profile can demonstrate the presence of dark 

spikes. The two-phase pixel structure is designed to confine transferred charge to a narrow 

channel to minimise CTI for improved radiation hardness [15], detailed information on the 

operation and performance of the CCD236 can be found in [15-17]. The CCD236 will be flown 

on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the 

Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. 

4. Experimental Arrangement and Technique 

The cryogenic irradiation test kit, illustrated in Figure 1, has been developed to measure the CTI 

(X-ray, Extended Pixel Edge Response (EPER) and First Pixel Edge response (FPR)), cosmetic 

quality and defect type and concentrations (trap pumping [18-20]) pre- and post-irradiation, and 

after different periods at room temperature [14]. The push-pulls allow the radiation shields to be 

manipulated into and out of the beam and the rotational option will allow multiple areas of the 

device to be irradiated. The use of an X-ray tube and rotational X-ray fluorescence (XRF) target 

holder enables calibration and CTI measurements to be performed at multiple energies. Two 

Light Emitting Diodes (LED) are included to provide the device with a flat field optical 

illumination for EPER, FPR and trap pumping measurements to be performed. 

The CCD236 was mounted onto an aluminium cold finger attached to a two stage 

thermoelectric cooler with 1000  platinum resistance thermometers fitted to the device 

package and cold finger to monitor the temperature. Temperature control to ± 0.2 C was 

provided by an ILX Lightwave (Bozeman USA) LDT-5525 controller. An Oxford Instruments 

(Scotts Valley USA) XTF5011/75-TH X-ray tube was used to fluoresce a polished manganese 

target held at 45 to the incident X-ray beam to provide a controllable number of 5,898 eV  



 

 
– 4 – 

tLC

D
EPER

neS

eS
CTI

)(

)(






X-rays onto the SCD. Clocking and biasing were provided by an XCAM ltd (Northampton UK). 

USB2REM2 camera drive box in conjunction with drive software controlled using a custom 

MatLab software program. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1: Schematic and photograph of the cryogenic test facility 

 

The CCD236 was operated in two different modes, in normal mode the device was clocked 

continuously at a controllable readout speed, varied by changing the time allowed to perform 

Correlated Double Sampling (CDS) thereby reducing the bandwidth at higher readout speeds. 

The typical operational speed of these detectors is between 90 to 120 kHz. Faster speeds were 

investigated to assess the impact of reduced bandwidth when compared to radiation induced 

dark current and CTI, to determine an optimal operating speed when using this detectors in 

space. The X-ray flux was varied to provide a comparable number of X-rays incident on the 

device. This mode allows noise and energy resolution measurements to be made, and an 

estimation of the dark current to be determined based on the measured system noise with the 

input to the CDS card grounded. The second mode provided a small integration period prior to 

readout producing a triangular dark current profile. The dark current will also include a small 

contribution of surface dark current, however as the integration time is small it is believed that 

the bulk component will dominate. The profile produced is as a result of the device structure, 

and a similar profile is observed when a flat field illumination was provided using the LEDs. 

The EPER measurement, previously untested in a SCD, relies on taking a flat field 

exposure, measured using a conventional CCD to be within 7% across the sensitive area of the 

CCD236, and measuring the amount of deferred charge in the overscan. The CTIEPER is given 

by:  

 

(1)  

 

where SD(e-) is the average deferred charge, SLC(e-) is the charge in the last column and nt is the 

number of pixel transfers [18]. The illumination was controlled to provide ~1600, 7000 and 

16000 electrons in the last column. Due to the nature of SCD readout it was not expected that 

the results found using this method would be comparable to the same measurement performed 

using a CCD. This was confirmed during pre-irradiation analysis where the CTI was calculated 
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to be of the order ×10-3. If the actual pixel to pixel transfer was of the order ×10-3 the energy 

resolution measured pre-irradiation of around 130 eV would not be achievable, a CTI of ×10-6 is 

typical for a conventional CCD. Smith et al. [17] describe a method to determine the actual CTI 

in a SCD using X-rays. However this method requires a greater amount of time making it 

unpractical to measure CTI for this study. 

4.1 CCD Irradiation and Annealing 

With the equipment assembled on the end of the Synergy Health Helios-3 beamline (Harwell 

UK) and after the device had been held at -35.4 C for a period of 30 minutes pre-irradiation 

tests were performed. The irradiation was then performed using 7.5 MeV protons at a flux of 

1.1×107 protons.cm-2.s-1. Dosimetry was performed by staff at the facility and is believed to be 

better than 10%. The SCD was irradiated with a 10 MeV equivalent proton fluence of 5.0×108 

protons.cm-2, selected based on the SPace ENVironment Information System [21] analysis of a 

one year lunar orbit using the shielding assumptions made for the Chandrayaan-1 X-ray 

Spectrometer instrument [22]. It is not possible to re-create the space radiation environment 

during ground testing, therefore to account for the range of proton energies in space the Non-

Ionising Energy Loss function is used as a scaling factor to provide a single energy equivalent 

proton fluence [23]. Upon the completion of the irradiation the post irradiation data collection 

was performed and the device allowed up to room temperature for return to the Open 

University. The test equipment was re-assembled and after a period of 24 hours the device was 

again cooled to -35.4 C and the test process repeated. The analysis was then repeated after the 

device had been at room temperature for 7, 12, 16.5 and 82 days.  

5. Results and Discussion 

Pre-irradiation the device performed well across the range of readout speeds explored, shown in 

Figure 2, providing near Fano limited performance. Post irradiation there is a clear decrease in 

energy resolution as a result of radiation induced dark current and CTI. The energy resolution 

post irradiation between 180 to 230 kHz is comparable, therefore by operating at 180 kHz the 

change in energy resolution over the course of the mission would be less when compared to 

operating at 100 kHz, for only a small reduction pre-irradiation of around 15 eV. The impact on 

performance is greater at higher temperatures, for example at 0.9 C operating at 180 kHz 

improves the post irradiation energy resolution by around 210 eV. This is in agreement with 

work performed using a CCD236 irradiated at room temperature where the energy resolution 

was measured at 110 kHz and 175 kHz [16]. The post irradiation energy resolution is within 

error at the higher readout speeds, and shows a small improvement at lower readout speeds after 

the device was held at room temperature. 

The total noise, consisting of system, read and dark noise components, as a function of 

readout speed is shown in Figure 3, the decrease pre-irradiation is as a result of the reduction in 

read noise, dark current is negligible at -35.4 C pre-irradiation. Post irradiation there is a large 

increase in dark current, greater at slower readout speeds due to the increased time in which 

dark current can be collected, which was observed to anneal after the device had been held at 

room temperature. The dark current was found to anneal with the device held at room 

temperature following a power law, t-0.17. The same behaviour was observed when a small 

integration time was applied prior to the device being read out, producing the typical SCD 

triangular dark current profile shown in Figure 4, confirming the belief that bulk dark current is 

dominant. The device will now continue to be monitored before performing a 100 C anneal. 
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Figure 2: Energy resolution at Mn-K as a function of readout speed at -35.4 C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Total noise as a function of readout speed at -35.4 C 

 

The observed decrease in dark current suggests an increase in the number of defects 

impacting the charge transfer, without this the decrease in dark current alone should provide a 

significant improvement in energy resolution compared to the results shown in Figure 2. The 

energy resolution can be estimated by: 
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where  is the mean ionisation energy (3.65 eV) required to create an e-h pair, FSi is the Fano 

factor (0.115), E is the X-ray energy (5,898 eV), r is the read noise, s is the system noise, d 

is the noise from the dark current and CTI the noise arising from the CTI. Using the above 

equation to determine the noise component from CTI it was found that a large increase in CTI 

was required after the 1 day anneal, followed by a small decrease with time spent at room 

temperature up to stabilisation at 12 days. The noise component of CTI was also found to 

decrease as the readout speed was increased. This behaviour was confirmed by looking at the 

CTIEPER as a function of readout speed, shown in Figure 5 where around 16000 electrons was 

measured in the last column. The data collected at 1600 and 7000 electrons followed a similar 

trend. The initial impact of the irradiation is clear by the large increase from the pre-irradiation 

value, as expected based on equation 2 the radiation induced increase in CTI is less as the 

readout speed was increased. The measured CTIEPER also demonstrates reverse annealing during 

the initial 24 hours at room temperature, followed by a small amount of annealing accounting 

for the observed change in energy resolution with the device being held at room temperature. 

  

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

Figure 4: Triangular dark current profile with data collected at -35.4 C during the room 

temperature anneal 

 

Considering the time allowed for lost charge to rejoin the charge packet at different speeds 

there are no known trap emission times that would have a large impact CTI. The time between 

successive X-ray events is difficult to estimate due to the readout nature of the CCD236 where 

four ~1 cm2 detector areas are combined. Based on the incident X-ray flux it would be in the 

range of 43 to 172 transfers between successive X-ray events. Considering this range and trap 

emission time constants at -35.4 C both the divancancy at 0.42 eV and the stable Ci-Ps at  

0.38 eV could be responsible for the observed trend at different readout speeds. The cause of the 

reverse annealing after 24 hours could be as a result of Ci mobility at room temperature, leading 

to the formation of Ci-Ps defects. The cause of the subsequent annealing is uncertain as both the 

divancancy and Ci-Ps are stable at this temperature. Unfortunately the readout nature of the SCD 

prohibits the use of techniques used to identify defects, for example trap pumping. 
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Figure 5: CTI as a function of readout speed at -35.4 C, measured with around 16000 electrons 

in the final column 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 6: Energy resolution measured at Cu-K as function of proton fluence, the data point for 

immediately post irradiation is based on Mn-K measurements 
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6. Conclusion 

Through the use of energy resolution, dark current and EPER measurements the performance of 

the SCD could be assessed quickly, minimising the time required at the irradiation facility. An 

estimation of the CTI was made using an optical illumination and the trend with readout speed 

was shown to compare well to the change predicted by energy resolution measurements, this 

demonstrates that the EPER technique is a valid method to minimise CTI in SCDs. 

The room temperature annealing of the CCD236 has demonstrated the continued 

importance of performing cryogenic irradiations. In this case a room temperature irradiation 

could lead to the energy resolution at end of life being estimated to be 10% lower with the 

device readout under typical operating speeds. The dark current was found to anneal at room 

temperature, however the expected improvement in performance was almost negated by the 

formation of defects, possibly Ci-Ps, negatively impacting charge transfer.  

The typical operating speed of an SCD is around 100 kHz, by operating the device at  

180 kHz the impact of radiation induced dark current and CTI is minimised, it also provides 

reduced impact from annealing giving greater confidence in room temperature results. 

Operating at 180 kHz also provides a more gradual decrease in energy resolution over the 

course of a mission and improved energy resolution at mission end. Should it be possible it 

would be advisable to implement the option of varying the readout speed over the course of a 

space mission using these detectors to minimise the impact of radiation induced dark current 

and CTI on instrument performance.  

Future tests will include devices irradiated at room temperature and monitored in the same 

manner as the cryogenically irradiated CCD, with a further CCD being held under cryogenic 

conditions continuously to monitor low temperature annealing over an extended period of time. 

The addition of trap pumping when using a conventional CCD will greatly increase the amount 

of information provided about defect formation and annealing within the silicon lattice. 
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