2,483 research outputs found

    Spectral bounds for the Hellmann potential

    Full text link
    The method of potential envelopes is used to analyse the bound state spectrum of the Schroedinger Hamiltonian H=-\Delta+V(r), where the Hellmann potential is given by V(r) = -A/r + Be^{-Cr}/r, A and C are positive, and B can be positive or negative. We established simple formulas yielding upper and lower bounds for all the energy eigenvalues.Comment: 9 pages, 2 figures, typos correcte

    SWEEPFINDER2: Increased sensitivity, robustness, and flexibility

    Full text link
    SweepFinder is a popular program that implements a powerful likelihood-based method for detecting recent positive selection, or selective sweeps. Here, we present SweepFinder2, an extension of SweepFinder with increased sensitivity and robustness to the confounding effects of mutation rate variation and background selection, as well as increased flexibility that enables the user to examine genomic regions in greater detail and to specify a fixed distance between test sites. Moreover, SweepFinder2 enables the use of invariant sites for sweep detection, increasing both its power and precision relative to SweepFinder

    A Bell-Evans-Polanyi principle for molecular dynamics trajectories and its implications for global optimization

    Full text link
    The Bell-Evans-Polanyi principle that is valid for a chemical reaction that proceeds along the reaction coordinate over the transition state is extended to molecular dynamics trajectories that in general do not cross the dividing surface between the initial and the final local minima at the exact transition state. Our molecular dynamics Bell-Evans-Polanyi principle states that low energy molecular dynamics trajectories are more likely to lead into the basin of attraction of a low energy local minimum than high energy trajectories. In the context of global optimization schemes based on molecular dynamics our molecular dynamics Bell-Evans-Polanyi principle implies that using low energy trajectories one needs to visit a smaller number of distinguishable local minima before finding the global minimum than when using high energy trajectories

    Stability in the instantaneous Bethe-Salpeter formalism: harmonic-oscillator reduced Salpeter equation

    Full text link
    A popular three-dimensional reduction of the Bethe-Salpeter formalism for the description of bound states in quantum field theory is the Salpeter equation, derived by assuming both instantaneous interactions and free propagation of all bound-state constituents. Numerical (variational) studies of the Salpeter equation with confining interaction, however, observed specific instabilities of the solutions, likely related to the Klein paradox and rendering (part of the) bound states unstable. An analytic investigation of this problem by a comprehensive spectral analysis is feasible for the reduced Salpeter equation with only harmonic-oscillator confining interactions. There we are able to prove rigorously that the bound-state solutions correspond to real discrete energy spectra bounded from below and are thus free of any instabilities.Comment: 23 pages, 3 figures, extended conclusions, version to appear in Phys. Rev.

    Quantum phase transitions in photonic cavities with two-level systems

    Full text link
    Systems of coupled photonic cavities have been predicted to exhibit quantum phase transitions by analogy with the Hubbard model. To this end, we have studied topologies of few (up to six) photonic cavities each containing a single two-level system. Quantum phase space diagrams are produced for these systems, and compared to mean-field results. We also consider finite effective temperature, and compare this to the notion of disorder. We find the extent of the Mott lobes shrink analogously to the conventional Bose-Hubbard model.Comment: 11 pages, 11 figures, updated typo

    On the Expansions in Spin Foam Cosmology

    Get PDF
    We discuss the expansions used in spin foam cosmology. We point out that already at the one vertex level arbitrarily complicated amplitudes contribute, and discuss the geometric asymptotics of the five simplest ones. We discuss what type of consistency conditions would be required to control the expansion. We show that the factorisation of the amplitude originally considered is best interpreted in topological terms. We then consider the next higher term in the graph expansion. We demonstrate the tension between the truncation to small graphs and going to the homogeneous sector, and conclude that it is necessary to truncate the dynamics as well.Comment: 17 pages, 4 figures, published versio

    Linking entanglement and quantum phase transitions via density functional theory

    Full text link
    Density functional theory (DFT) is shown to provide a novel conceptual and computational framework for entanglement in interacting many-body quantum systems. DFT can, in particular, shed light on the intriguing relationship between quantum phase transitions and entanglement. We use DFT concepts to express entanglement measures in terms of the first or second derivative of the ground state energy. We illustrate the versatility of the DFT approach via a variety of analytically solvable models. As a further application we discuss entanglement and quantum phase transitions in the case of mean field approximations for realistic models of many-body systems.Comment: 6 pages, 2 figure

    New Method to Calculate Electrical Forces Acting on a Sphere in an Electrorheological Fluid

    Get PDF
    We describe a method to calculate the electrical force acting on a sphere in a suspension of dielectric spheres in a host with a different dielectric constant, under the assumption that a spatially uniform electric field is applied. The method uses a spectral representation for the total electrostatic energy of the composite. The force is expressed as a certain gradient of this energy, which can be expressed in a closed analytic form rather than evaluated as a numerical derivative. The method is applicable even when both the spheres and the host have frequency-dependent dielectric functions and nonzero conductivities, provided the system is in the quasistatic regime. In principle, it includes all multipolar contributions to the force, and it can be used to calculate multi-body as well as pairwise forces. We also present several numerical examples, including host fluids with finite conductivities. The force between spheres approaches the dipole-dipole limit, as expected, at large separations, but departs drastically from that limit when the spheres are nearly in contact. The force may also change sign as a function of frequency when the host is a slightly conducting fluid.Comment: 29 pages, 8 figures, Accepted for Publication in Physical Review
    corecore