Density functional theory (DFT) is shown to provide a novel conceptual and
computational framework for entanglement in interacting many-body quantum
systems. DFT can, in particular, shed light on the intriguing relationship
between quantum phase transitions and entanglement. We use DFT concepts to
express entanglement measures in terms of the first or second derivative of the
ground state energy. We illustrate the versatility of the DFT approach via a
variety of analytically solvable models. As a further application we discuss
entanglement and quantum phase transitions in the case of mean field
approximations for realistic models of many-body systems.Comment: 6 pages, 2 figure