34 research outputs found
Applying MAPP Algorithm for Cooperative Path Finding in Urban Environments
The paper considers the problem of planning a set of non-conflict
trajectories for the coalition of intelligent agents (mobile robots). Two
divergent approaches, e.g. centralized and decentralized, are surveyed and
analyzed. Decentralized planner - MAPP is described and applied to the task of
finding trajectories for dozens UAVs performing nap-of-the-earth flight in
urban environments. Results of the experimental studies provide an opportunity
to claim that MAPP is a highly efficient planner for solving considered types
of tasks
A comparative study of navigation meshes
International audienceA navigation mesh is a representation of a 2D or 3D virtual environment that enables path planning and crowd simulation for walking characters. Various state-of-the-art navigation meshes exist, but there is no standardized way of evaluating or comparing them. Each implementation is in a different state of maturity, has been tested on different hardware, uses different example environments, and may have been designed with a different application in mind. In this paper, we conduct the first comparative study of navigation meshes. First, we give general definitions of 2D and 3D environments and navigation meshes. Second, we propose theoretical properties by which navigation meshes can be classified. Third, we introduce metrics by which the quality of a navigation mesh implementation can be measured objectively. Finally, we use these metrics to compare various state-of-the-art navigation meshes in a range of 2D and 3D environments. We expect that this work will set a new standard for the evaluation of navigation meshes, that it will help developers choose an appropriate navigation mesh for their application, and that it will steer future research on navigation meshes in interesting directions
Optimal any-angle pathfinding in practice
Any-angle pathfinding is a fundamental problem in robotics and computer games. The
goal is to find a shortest path between a pair of points on a grid map such that the
path is not artificially constrained to the points of the grid. Prior research has focused
on approximate online solutions. A number of exact methods exist but they all require super-linear space and pre-processing time. In this study, we describe Anya: a new and optimal any-angle pathfinding algorithm. Where other works find approximate any-angle
paths by searching over individual points from the grid, Anya finds optimal paths by
searching over sets of states represented as intervals. Each interval is identified on-the-fly. From each interval Anya selects a single representative point that it uses to compute an admissible cost estimate for the entire set. Anya always returns an optimal path if one exists. Moreover it does so without any offline pre-processing or the introduction of additional memory overheads. In a range of empirical comparisons we show that Anya is
competitive with several recent (sub-optimal) online and pre-processing based techniques and is up to an order of magnitude faster than the most common benchmark algorithm, a grid-based implementation of A*
Bi-Objective Search with Bi-directional A* (Extended Abstract)
Bi-objective search is a problem of finding a set of optimal solutions in a two-dimensional domain. This study proposes several enhancements to the state-of-the-art bi-objective search with A* and develops its bi-directional variant. Our experimental results on benchmark instances show that our enhanced algorithm is on average five times faster than the state of the art bi-objective search algorithms
Snapshot-Optimal Real-Time Ride Sharing
Ridesharing effectively tackles urban mobility challenges by providing a service comparable to private vehicles while minimising resource usage. Our research primarily concentrates on dynamic ridesharing, which conventionally involves connecting drivers with passengers in need of transportation. The process of one-to-one matching presents a complex challenge, particularly when addressing it on a large scale, as the substantial number of potential matches make the attainment of a global optimum a challenging endeavour. This paper aims to address the absence of an optimal approach for dynamic ridesharing by refraining from the conventional heuristic-based methods commonly used to achieve timely solutions in large-scale ride-matching. Instead, we propose a novel approach that provides snapshot-optimal solutions for various forms of one-to-one matching while ensuring they are generated within an acceptable timeframe for service providers. Additionally, we introduce and solve a new variant in which the system itself provides the vehicles. The efficacy of our methodology is substantiated through experiments carried out with real-world data extracted from the openly available New York City taxicab dataset