
HAL Id: hal-01392267
https://hal.inria.fr/hal-01392267

Submitted on 4 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A comparative study of navigation meshes
Wouter van Toll, Roy Triesscheijn, Marcelo Kallmann, Ramon Oliva, Nuria

Pelechano, Julien Pettré, Roland Geraerts

To cite this version:
Wouter van Toll, Roy Triesscheijn, Marcelo Kallmann, Ramon Oliva, Nuria Pelechano, et al.. A
comparative study of navigation meshes. MIG ’16 - 9th International Conference on Motion in Games
, Oct 2016, San Francisco, United States. pp.91 - 100, �10.1145/2994258.2994262�. �hal-01392267�

https://hal.inria.fr/hal-01392267
https://hal.archives-ouvertes.fr

A Comparative Study of Navigation Meshes

Wouter van Toll∗

Utrecht University
Roy Triesscheijn

Utrecht University
Marcelo Kallmann

University of California, Merced
Ramon Oliva

Universitat Politecnica de Catalunya

Nuria Pelechano
Universitat Politecnica de Catalunya

Julien Pettré
INRIA

Roland Geraerts
Utrecht University

Figure 1: Navigation meshes computed for the Military environment. Regions are shown in different colors. From left to right: the Local
Clearance Triangulation, the Explicit Corridor Map, the Clearance Disk Graph, Recast, NEOGEN, and a grid.

Abstract

A navigation mesh is a representation of a 2D or 3D virtual envi-
ronment that enables path planning and crowd simulation for walk-
ing characters. Various state-of-the-art navigation meshes exist, but
there is no standardized way of evaluating or comparing them. Each
implementation is in a different state of maturity, has been tested on
different hardware, uses different example environments, and may
have been designed with a different application in mind.

In this paper, we conduct the first comparative study of naviga-
tion meshes. First, we give general definitions of 2D and 3D en-
vironments and navigation meshes. Second, we propose theoretical
properties by which navigation meshes can be classified. Third, we
introduce metrics by which the quality of a navigation mesh im-
plementation can be measured objectively. Finally, we use these
metrics to compare various state-of-the-art navigation meshes in a
range of 2D and 3D environments.

We expect that this work will set a new standard for the evaluation
of navigation meshes, that it will help developers choose an appro-
priate navigation mesh for their application, and that it will steer
future research on navigation meshes in interesting directions.

Keywords: navigation meshes, path planning, comparative study

Concepts: •Computing methodologies→Mesh geometry mod-
els; Motion path planning; •General and reference → Metrics;
Evaluation;

∗Corresponding author. E-mail: W.G.vanToll@uu.nl.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
MiG ’16, October 10-12, 2016, Burlingame, CA, USA
ISBN: 978-1-4503-4592-7/16/10. . . $15.00
DOI: http://dx.doi.org/10.1145/2994258.2994262

1 Introduction

Path planning for moving characters in virtual environments is
a fundamental task in simulations and games. Modern applica-
tions feature increasingly large crowds of characters; each character
needs to autonomously compute and follow a path while avoiding
collisions with obstacles and other characters. This leads to many
queries related to e.g. path planning, path following, point location,
and collision avoidance [van Toll et al. 2015]. The simulation is ex-
pected to run in real-time despite all these demands. This stresses
the need for high-quality data structures and algorithms.

Path planning for characters is different from robot motion plan-
ning, in which the high-dimensional configuration space of a robot
[Lozano-Perez 1983] is often represented as a sampling-based
graph (e.g. [Kavraki et al. 1996; LaValle 2006]). In our domain,
the environments are typically three-dimensional, but characters are
constrained to surfaces that are sufficiently flat to walk on. The be-
havior of characters may also include crawling, running, and other
surface-based movement, but we will speak of walking and walk-
able surfaces for simplicity. The walkable surfaces of an environ-
ment form the free space Efree, which is usually less complex than
the environment itself.

A navigation mesh is a representation of Efree as a set of (usually
polygonal) regions, along with a graph that describes how these
regions are connected. For path planning, characters first find an
optimal path in the graph and then compute a suitable geometric
route through the corresponding regions. A research topic of in-
creasing importance is the automatic construction of a navigation
mesh for any input environment. Current construction algorithms
can roughly be placed into one of two categories: voxel-based al-
gorithms that approximate the walkable surfaces from raw 3D ge-
ometry, or exact algorithms that require pre-processed input (e.g.
a set of 2D layers) to compute a navigation mesh with a provable
worst-case complexity. This difference makes the two categories
difficult to compare. Furthermore, each method uses its own set
of test environments to show its (dis)advantages. To steer subse-
quent research into interesting directions, an objective comparison
between navigation meshes is required.

Goals and Contributions. In this paper, we conduct a comparative
study of navigation mesh implementations by using the same hard-
ware, quality metrics, and input environments for all methods. Our
goal is to propose a way to objectively measure how suitable par-

91

http://dx.doi.org/10.1145/2994258.2994262

ticular navigation meshes are for particular types of environments.
Because navigation meshes have many applications with different
requirements, it is difficult to propose a single criterion that can
identify ‘the best’ navigation mesh. Instead, we present a collec-
tion of criteria, each of which is relevant for particular applications.

The main contributions of this paper are the following:

• We propose properties by which the data structures and algo-
rithms of navigation meshes can be classified (Section 4).

• We present quantitative metrics to measure the quality and
performance of a navigation mesh implementation for a given
input environment (Section 5). In particular, we address the
concept of coverage in 3D.

• We combine these metrics into a benchmark tool, and we use
it to compare state-of-the-art navigation mesh implementa-
tions in a range of 2D and 3D environments (Section 6).

We emphasize that our goal is not to expose which navigation mesh
implementation works best for particular input environments. In-
stead, by comparing navigation meshes using a common test plat-
form and settings, we intend to set a standard for the analysis of nav-
igation meshes and to expose interesting areas for future research.

2 Related Work

2.1 Navigation Meshes

Snook [2000] and Tozour [2002] were among the first to use the
term ‘navigation mesh’ for a subdivision of the walkable space
into polygonal regions. Because constructing a navigation mesh by
hand is time-consuming and subject to human error, there has been
increasing interest in automatically computing a navigation mesh
from an input environment.

Voxel-based methods [Deusdado et al. 2008; Mononen 2014; Oliva
and Pelechano 2013b; Pettré et al. 2005] usually take an unpro-
cessed 3D environment as their input. To construct a navigation
mesh, they discretize the environment into a 3D grid of voxels us-
ing GPU techniques, extract the voxels that correspond to walkable
regions, and summarize this information in a navigation mesh that
approximates the geometry of Efree. This reconstruction is based
on the assumption that the environment has a single direction of
gravity ~g, and that characters are cylinders with a fixed height and
(sometimes) a fixed radius. Voxel-based methods can handle arbi-
trary 3D geometry; the approximation automatically resolves issues
caused by e.g. intersecting obstacles. However, the precision and
efficiency of these methods depends to a certain degree on the grid
resolution. The quality of the navigation mesh depends on how well
the free space is extracted from the 3D geometry.

Exact methods [Geraerts 2010; Hale et al. 2008; Kallmann 2014;
Oliva and Pelechano 2011; van Toll et al. 2011; Tozour 2002] re-
quire that the exact geometry of Efree is already known, and that this
free space has been pre-processed into one or more planar layers. In
exchange, they represent their input precisely, and they often have
provable worst-case construction times and storage sizes, which im-
plies better scalability to large environments. However, extracting
Efree from a 3D environment without using approximations is still a
topic of ongoing research [Polak 2016].

Researchers have also investigated navigation meshes for other
types of geometry or movement. An environment can be subdi-
vided into 3D volumes to encode height differences and variable
vertical clearance [Hale and Youngblood 2009; Lamarche 2009].
Alternatively, one could perform crowd simulations on arbitrary
surfaces with no consistent direction of gravity [Ricks and Egbert

2014; Berseth et al. 2015]. Other methods allow characters to jump
between surfaces by either checking for jumping possibilities on
the fly [Lopez et al. 2012] or annotating a navigation mesh with
jump links beforehand [Budde 2013]. However, these extensions
are outside the scope of our comparative study.

Navigation meshes are useful for simulating crowds of characters
with individual properties and goals. Crowd simulation is a large
research field with many components including path planning, col-
lision avoidance between characters, animation, and the evaluation
of realism. Several books exist that give good overviews of this
field [Ali et al. 2013; Kapadia et al. 2015; Pelechano et al. 2016;
Thalmann and Musse 2013]. Also, there are multiple crowd sim-
ulation frameworks in which navigation meshes play a central role
[Curtis et al. 2014; van Toll et al. 2015]. In this paper, we focus
on the fundamental properties of navigation meshes, so we will not
treat the field of crowd simulation in more detail. However, crowd
simulation is an important motivation for many of the properties
and metrics that we will propose.

2.2 Comparative Studies

Our comparative study of navigation meshes is inspired by compar-
isons for other aspects of path planning and crowd simulation.

Sturtevant [2012] has developed a test set of environments for 2D
grid-based path planning. This set includes mazes of various com-
plexities and levels from computer games, and it is often used to
analyze variants of the A* search algorithm [Hart et al. 1968]. Al-
though we study general navigation meshes rather than grids, we
will also include grid-based environments in our experiments.

SteerBench [Singh et al. 2009] focuses on local behavior such as
collision avoidance. It presents a comprehensive set of scenarios
that local methods are expected to solve, such as two characters
crossing paths, or characters switching places in a narrow corridor.
Given the output of a crowd simulation for such a scenario, Steer-
Bench can compute metrics such as the distance that all characters
traverse and the amount of energy that they spend. However, the
results need to be put in perspective because steering methods typ-
ically have many parameters and implementation choices.

In this paper, we compare navigation meshes in a similar way based
on metrics, input environments, and a single test platform. We will
see that parameter settings are influential in our study as well.

3 Definitions

In this section, we give definitions of environments and navigation
meshes. This is useful because all existing papers and algorithms
use slightly different terminology; the content of Sections 4 and 5
requires unified definitions.

3.1 2D Environment

A 2D environment is a finite subset of the 2D plane with polygonal
holes; we refer to these holes as obstacles. We will not consider
point or line segment obstacles in this paper. The obstacle space
Eobs is the union of all obstacles. Its complement is the free space
Efree. Let n be the number of vertices required to define Eobs or Efree

using simple polygons. We call n the complexity of E .

In our experiments, we want to treat 2D and 3D environments sim-
ilarly. We will therefore embed our 2D environments in R3 by as-
signing a height component of zero to each vertex.

92

(a) 3D environment (b) Walkable environment (c) Multi-layered environment (d) Navigation mesh

Figure 2: Different representations of an environment, and an example of its navigation mesh. (a) A 3D environment consists of unprocessed
3D geometry. (b) A walkable environment (WE) contains only walkable surfaces. It is the free space Efree of a 3D environment. (c) A
multi-layered environment (MLE) is a WE subdivided into layers. (d) A navigation mesh is a description of a WE for path planning purposes.

3.2 3D Environment

In this paper, a 3D environment (3DE) is a raw collection of poly-
gons in R3. These polygons may include floors, ceilings, walls, or
any other type of geometry. Figure 2a shows an example. To define
the free space Efree of a 3DE, we need to specify various parameters
that describe on which surfaces a character may walk. Examples
of such parameters are the maximum slope with respect to the di-
rection of gravity, the maximum height difference between nearby
polygons (e.g. the maximum step height of a staircase), and the re-
quired vertical distance between a floor and a ceiling.

Characters are typically approximated by cylinders. Some naviga-
tion meshes use a predefined character radius to determine Efree. In
this paper, we will use a radius of zero to enable an objective com-
parison to other navigation meshes.

3.3 Walkable Environment

A walkable environment (WE) is a set of interior-disjoint polygons
in R3 on which characters can stand and walk. Thus, a WE is a
clean representation of the free space Efree of a 3DE, based on the
filtering parameters and character properties mentioned earlier. Any
two polygons are directly connected if and only if characters can
walk directly between them. Figure 2b shows an example. In our
experiments, all environments will be WEs, so we know beforehand
which area should be covered by a navigation mesh.

All polygons in the WE have a maximum slope with respect to the
ground plane P , which is the plane perpendicular to the gravity
direction ~g. It is common for a navigation mesh to project the length
of a path onto P as well, i.e. to ignore height differences along a
path during planning. Therefore, in this paper, we will not judge a
navigation mesh by its preservation of height differences.

The complexity of a WE is the total number of polygon vertices.
The free space Efree is simply the set of polygons itself. The obsta-
cle space Eobs can be thought of as ‘anything beyond the boundary
of Efree’, but (unlike in 2D) it is difficult to represent or visualize
because it does not necessarily consist of polygons on a plane.

It is important to see that a WE can be self-overlapping when pro-
jected onto the ground plane P , i.e. it is not guaranteed that all
surfaces are visible from a single top view. This strongly influences
the construction of navigation meshes: an algorithm for 2D envi-
ronments cannot easily be applied to WEs in general.

3.4 Multi-Layered Environment

Some navigation meshes require the WE to be subdivided into 2D
components. A multi-layered environment (MLE) [Pettré et al.
2005; van Toll et al. 2011] is a subdivision of a WE into layers

such that the walkable polygons of each individual layer are non-
overlapping when projected onto P . The layers are connected by
line segments. An example of an MLE is shown in Figure 2c.

The complexity of an MLE is given by the number of layers l, the
number of connections k, and the number of boundary vertices n
in all layers combined. Converting a WE to an MLE with a min-
imal number of connections is NP-hard, but good results can be
obtained using heuristics [Hillebrand 2012]. In our experiments,
we will subdivide all WEs into layers to facilitate the construction
of navigation meshes.

Finally, note that a 2D environment is a special case of an MLE
with only one layer (or, equivalently, a WE that can be projected
onto P without overlap). Section 5 will define quality metrics for
WEs in general, so that 2D and 3D input can be treated equally.

3.5 Navigation Mesh

Now that we have a definition of the free space Efree, we can define
a navigation mesh as a tupleM = (R,G):

• R = {R0, R1, . . .} is a collection of geometric regions in R3

that represents Efree. Each region Ri is P -simple, by which
we mean that a region cannot intersect itself when projected
onto the ground plane P .

• G = (V,E) is an undirected graph that describes how char-
acters can navigate between the regions inR.

Figure 2d shows an abstract example of a navigation mesh. For
many navigation meshes, R consists of non-overlapping simple
polygons, and G is the dual graph of R, with one vertex per re-
gion and one edge per pair of adjacent region sides. However, other
possibilities exist. In the Clearance Disk Graph [Pettré et al. 2005],
R consists of overlapping disks, and G contains an edge wherever
two disks overlap. The Explicit Corridor Map [van Toll et al. 2011]
is explicitly defined as a graph, and the mesh regions can be derived
from its annotations. Still, all meshes have in common that R and
G can be obtained from their representation in some way.

4 Properties of Navigation Meshes

In this section, we propose a set of properties that describe a naviga-
tion mesh’s data structure, algorithms, and limitations. These prop-
erties do not depend on a specific implementation or environment.
They can serve as a ‘checklist’ to simplify choosing an appropriate
mesh for a particular application.

Region type The type of regions inR, e.g. triangles or disks.

Graph type A description of the path planning graph G, e.g. ‘the
dual graph ofR’ or ‘the medial axis of Efree’.

93

Overlap Whether or not the regions in R can overlap by defini-
tion. Having overlapping regions is generally discouraged be-
cause geometric algorithms that assume non-overlapping re-
gions may not work properly. Also, a query point (or an agent)
can be in multiple regions at the same time in case of overlap,
which may complicate path planning and crowd simulation.

Pipeline The conversion pipeline performed by the construction
algorithm, e.g. ‘from a 2D environment to a navigation mesh’
or ‘from a 3DE via an MLE to a navigation mesh’. We also
indicate whether this pipeline is voxel-based or exact.

Parameters The parameters that the user needs to set for the con-
struction algorithm of the navigation mesh. Having fewer pa-
rameters implies a more automated process for computing the
mesh. These parameters are often related to the filtering pro-
cess that extracts the walkable surfaces from the 3D geometry.

Computational complexity The asymptotic construction time of
the navigation mesh. This is usually expressed in terms of the
environment complexity or a grid resolution.

Storage complexity The asymptotic size of the navigation mesh
data structure.

Clearance Whether or not the navigation mesh supports the com-
putation of paths with an arbitrary clearance from obstacles,
i.e. paths for disks with an arbitrary radius.

Dynamic updates Whether or not the navigation mesh supports
dynamic insertions and deletions of obstacles.

Due to space constraints, we cannot include our full theoretical
comparison of the navigation meshes that will be used in our exper-
iments. Instead, Section 6.1 will describe each method briefly, and
Table 1 classifies each method by the properties described above.
We will include the full comparison in an extended publication.

5 Quality Metrics for Navigation Meshes

For a navigation meshM = (R,G) that has been constructed for
an environment using a particular implementation, we want to ob-
jectively measure the quality. Many possible evaluation criteria ex-
ist, and each application area may have its own view of what is good
or desirable. In this paper, we choose to focus on the navigation
mesh itself and on the performance of its construction algorithm.
We will present metrics that answer the following questions:

1. (Coverage) How accurately do the regions ofR cover the ge-
ometry of Efree? If parts of the free space are not covered,
characters might not find a path in G even though a path exists
in Efree. If parts outside the free space are covered, characters
might accidentally find paths through obstacles.

2. (Connectivity) How accurately does the graph G represent the
connectivity of Efree? This question is related to coverage be-
cause it determines whether or not appropriate paths can be
found; however, it concerns topology rather than geometry.

3. (Complexity) How efficiently doesM represent Efree, i.e. how
‘compact’ is the mesh? This can refer to the size of the graph
G (a smaller graph allows faster path planning queries) or to
the complexity of each individual region in R (simpler re-
gions allow faster basic operations such as point location). It
depends on the application which property is more desirable.

4. (Performance) How efficiently is M computed in terms of
time and memory? An efficient algorithm allows the construc-
tion of navigation meshes in interactive applications such as

level editors. Even if the navigation mesh is precomputed in
an off-line stage, performance is still desirable.

Of course, many other questions are interesting, e.g. questions re-
lated to the peformance of path planning queries, or to the quality or
realism of paths. We will discuss a number of options in Section 7
as suggestions for future work.

Analyzing coverage and connectivity is only useful for voxel-based
navigation meshes that attempt to ‘discover’ Efree themselves; exact
methods are known to yield perfect coverage. Also, some proper-
ties can only be analyzed if the ground truth (the structure of Efree)
is known. Therefore, each input environment in our experiments
will be a ‘clean’ walkable environment, i.e. a manifold that con-
tains only walkable polygons. While this implies that voxel-based
methods will not fully use their advantage of handling raw (non-
clean) 3D geometry, we believe that using the same input for all
methods yields a more objective comparison.

Since the outcome of each metric depends on implementation de-
tails, the results should always be judged in combination with the
theoretical properties of Section 4.

5.1 Coverage

The first set of metrics describes how well the free space is cov-
ered. Coverage is a complicated property to evaluate due to the 3D
structure ofR and Efree. We need to introduce a number of concepts
before we can define actual metrics. These concepts are based on
the assumption that the environment has a consistent direction of
gravity. Coverage is the only category of metrics in which this as-
sumption comes into play.

5.1.1 Mapping the Navigation Mesh onto the Free Space

Comparing the geometry ofR to the geometry of Efree requires us to
vertically map these two structures onto each other. This is straight-
forward if the environment consists of a single layer because every-
thing can then be projected onto the ground plane P . However, for
general WEs in R3, mapping R onto Efree is ambiguous. In an ab-
stract sense, there should be a function m such that, for any point
p in a navigation mesh, m(p) vertically maps p to an appropriate
point in Efree if possible (and if not, p is assumed to lie in Eobs).
Several choices can be made here, such as the maximum allowed
height difference between p and m(p). We will describe our own
implementation of m in Section 6.

Using the function m, we define a mapped region R∗i as a region
Ri that has been mapped onto Efree wherever possible, i.e. R∗i =
{m(p) | p ∈ Ri and m(p) exists}. Because each mapped region is
a subset of Efree, we can use the mapped regions to define unions,
coverage, and overlap. Let the mapped region set R∗ be a version
of R in which all regions have been mapped onto Efree, i.e. R∗ =
{R∗i |Ri ∈ R}. The regions inR∗ may overlap: in that case, some
points of Efree are represented more than once.

5.1.2 Computing the Projected Area

Because we ignore height differences in our problem domain, our
coverage metrics are based on projected areas onto the ground plane
P . We define the projected area of a shape S as follows:

• If S does not overlap itself when projected onto P (i.e. if S
is a P -simple shape as defined in Section 3.5), the projected
area ||S|| is the signed area of the projection of S onto P .

• Otherwise, let {S0, . . . , Ss−1} be any subdivision of S into
P -simple shapes. The projected area of S is the sum of pro-
jected areas of these components, i.e. ||S|| =

∑
i ||Si||.

94

We assume that Efree is given as a subdivision into P -simple shapes,
such that ||Efree|| can be computed.

5.1.3 Coverage Metrics

We introduce three coverage metrics. Each metric has a regular
version M with range R≥0 and a normalized version M ′ with range
[0, 1], as described below.

Free space covered The area of Efree that is correctly covered by at
least one navigation mesh region. Because the regions in R∗
may overlap and we do not want to count overlapping regions
twice, we first compute the union ofR∗ in R3. High coverage
is desirable: it allows characters to use more of Efree.

Cov = ||
⋃
i

R∗i || and Cov′ =
Cov
||Efree||

Incorrect area The area of the mesh that ‘overshoots’ Efree and
lies in the obstacle space. Intuitively, this is the difference
between R and the part of R that can be mapped onto Efree.
Ideally, the incorrect area should be zero because areas out-
side Efree should not be accessible to characters.

Ainc =
∑
i

(||Ri|| − ||R∗i ||) and A′inc =
Ainc∑
i ||Ri||

Note: while it may seem more intuitive to express this metric
as ‘the area of Eobs that is covered’, this would be impossible
because (for WEs in 3D) Eobs does not have an area.

Overlap The amount of overlap among the regions in the naviga-
tion mesh. Intuitively, overlap is the sum of all region areas
minus the area that is covered at least once. Because coverage
is only defined properly inside Efree, overlap is also based on
the mapped region set R∗. The normalized version indicates
which fraction ofR∗ is redundant.

Ov =
∑
i

||R∗i || − ||
⋃
i

R∗i || and Ov′ =
Ov∑

i ||R∗i ||

If a navigation mesh is deliberately based on overlapping re-
gions (e.g. [Pettré et al. 2005]), then this metric simply indi-
cates how much space is covered more than once. Otherwise,
overlap may indicate an implementation bug, which is not the
focus of our comparative study.

5.2 Connectivity

The second set of metrics analyzes how well the graph G = (V,E)
represents the dual graph of Efree.

Connected components The number of connected components
in G. Ideally, this value is equal to the number of connected
components in Efree. Having more components implies that
not all adjacencies in Efree are captured. Having fewer com-
ponents implies that regions have been made adjacent when
there are actually obstacles in-between.

Boundaries The number of environment boundaries perceived
by the navigation mesh. Ideally, this value is equal to the ac-
tual number of boundaries of Efree. It can be computed by
traversing the graph G, checking the corresponding regions
in R, and collecting the region edges that are not shared by
multiple regions. The number of boundaries is the number of
closed loops that are traced. Note: if the number of bound-
aries is perfect, the geometry ofR is not necessarily correct.

5.3 Complexity

The third set of metrics measures how efficiently the navigation
mesh represents Efree. The size of G, the number of regions, and
the complexity of these regions may have implications for the effi-
ciency of path planning and crowd simulation.

Vertices, # Edges The number of vertices and the number of
edges in G, i.e. |V | and |E|. A larger graph implies that path
planning queries (and other algorithms that browse the graph)
typically take more time to answer. Therefore, lower numbers
imply faster path planning.

Regions The number of regions in the navigation mesh: |R|.
This indicates how efficiently the free space is represented by
elementary parts. It also suggests how often a character in
the simulation may move from one region to another. Moving
to another region typically triggers computational overhead in
the simulation. Hence, having fewer regions may cause some
aspects of the simulation to run more efficiently. Note that
|R| = |V | if G is simply the dual graph ofR.

Region complexity The number of floating-point numbers re-
quired to describe the regions in R. Since we treat regions
as shapes in R3, we will say that a polygonal region with p
vertices has complexity 3p. A disk has a complexity of 4 be-
cause it can be defined by a center point in R3 and a radius.
Naturally, other choices are possible as well. Some navigation
meshes have extra annotations, such as the maximum allowed
radius of a character for an edge traversal [Kallmann 2014].
We will not include such annotations in this metric.

We measure three variants: the average complexity among all
regions, the standard deviation, and the total complexity of all
regions combined. A low region complexity implies that ge-
ometric operations within these regions are computationally
cheap. If a mesh has a small number of regions, a low re-
gion complexity, and high coverage, then it is a very efficient
description of Efree.

5.4 Performance

The final set of metrics concerns the practical performance of the
navigation mesh implementations. One issue to take into account is
that voxel-based methods perform more steps than exact methods.
Another issue is that different implementations are in drastically
different states: some are a ‘proof of concept’ for research purposes,
while others are highly optimized for the gaming and simulation in-
dustry. Still, these metrics can indicate if an implementation corre-
sponds to the asymptotic complexity of a navigation mesh, and how
well a navigation mesh scales to large or complex environments.

Construction time The time (in milliseconds) spent on computing
the navigation mesh. Naturally, fast construction is encour-
aged because it makes the algorithm suitable for interactive
applications.

Memory usage The maximum amount of memory (in MB) used
during the execution of the program. A small value implies
that the mesh can be computed in situations with limited re-
sources, e.g. on a game console with little working memory.

To obtain more reliable results, we will run each navigation mesh
program 10 times and report the average values and standard devia-
tions. This is not needed for the other categories of metrics because
the output of each program is deterministic.

95

6 Experimental Comparison

In this section, we use our metrics to experimentally compare vari-
ous navigation meshes in a range of environments. All experiments
were run on a Windows 7 PC with a 3.20 GHz Intel i7-3930K CPU,
an NVIDIA GeForce GTX 680 GPU, and 16 GB of RAM.

6.1 Navigation Meshes

We compare five state-of-the-art navigation mesh implementations
and one extra baseline method. The first two navigation meshes
are exact; the others are voxel-based and cover the full 3D pipeline.
We currently include only the navigation meshes that are designed
specifically for the environments described in Section 3, and for
which we could obtain robust source code from their respective au-
thors. Naturally, we encourage others to join this comparison.

Table 1 summarizes each navigation mesh based on the properties
from Section 4. Most of these navigation meshes depend on various
parameters. The parameter settings that we use in our experiments
are listed in Appendix A in the supplementary file. Examples of the
output for each method are shown in Figure 1.

Local Clearance Triangulation (LCT). The LCT [Kallmann
2014] subdivides a 2D environment of complexity n into O(n)
triangles by first computing a constrained Delaunay triangulation
and then adapting it in O(n2) worst-case time. The tested imple-
mentation runs inO(n

√
n) expected time by using a special point-

location method. These triangles are the regions of R, and G is
their dual graph. Triangle edges are annotated with clearance val-
ues to allow path planning for characters of an arbitrary radius. The
LCT also supports dynamic updates. An extension to MLEs has
not been developed, but an approach similar to the Explicit Corri-
dor Map (described next) should be possible.

The LCT uses line segments as input and output, so our benchmark
program needs to translate between walkable regions and bound-
ary representations. These steps will not be included in our time
measurements.

Explicit Corridor Map (ECM). The ECM [van Toll et al. 2011] is
an exact navigation mesh. Its graph G = (V,E) is the medial axis
of Efree, where V contains the medial axis vertices of degree 1, 3,
or higher, and each edge E is a sequence of medial axis arcs. Cer-
tain medial axis points are annotated with their two nearest obstacle
points, which induces a subdivision of Efree into polygonal regions.

The ECM enables path planning for characters of any radius, and
the nearest obstacle in any region can be found in constant time.
The ECM also supports dynamic updates. For a 2D environment
of complexity n, the ECM has size O(n) and is computed in
O(n logn) time. For an MLE with k connections, it has size
O(kn) and can be computed in O(kn logn) time by iteratively
opening the connections. In exchange for its advantages, the ECM
is mathematically more complex than e.g. a triangulation.

Clearance Disk Graph (CDG). Pettré et al. [2005] presented the
first voxel-based navigation mesh for 3D environments. In this pa-
per, we refer to it as the Clearance Disk Graph (CDG). The CDG
uses voxelization to approximate the areas where characters can
stand. Next, the voxels are extracted for which the clearance is
locally largest. These form an approximation of the medial axis of
Efree, and each cell represents an obstacle-free disk. A subset of
these disks is chosen as the set of regions R, and the graph G de-
scribes the disks and their overlap. Extra disks (that do not lie on
the medial axis) can be added to improve coverage.

The asymptotic construction time of the CDG is difficult to assess
because the algorithm relies on rendering techniques. Also, the

number of disks cannot be expressed in terms of the environment
complexity, but it is at least limited by the number of voxels S.

Recast. The Recast Navigation toolkit [Mononen 2014] is a pop-
ular choice for game development that is also used in the Unity3D
game engine [2016]. Like the CDG, it uses voxelization to approx-
imate Efree. However, Recast converts the walkable voxels to non-
overlapping convex polygonal regions. This conversion involves
many parameters that the user needs to tweak to get the best results.
One parameter is the character radius, which is subtracted from the
navigation mesh during its construction. As mentioned, we will use
a radius of zero to allow a fair comparison to other methods.

Recast computes two versions of the navigation mesh: a coarse
mesh used for path planning, and a detailed mesh with more ac-
curate height differences. We will use the coarse mesh to determine
R and G, and the detailed mesh to measure coverage.

NEOGEN. The NEOGEN method [Oliva and Pelechano 2013b]
also starts with voxelization, but it groups walkable voxels into 2D
layers. Next, the method obtains a more precise floorplan for each
layer in a way that does not depend on the voxel size. Compared
to Recast, the overall precision of NEOGEN is therefore less de-
pendent on the grid resolution. Based on these floorplans, an exact
2D algorithm [Oliva and Pelechano 2011] is used to compute the
final navigation mesh. This 2D algorithm subdivides the layer into
convex polygons in O(nr) time, where r < n is the number of
convex polygon vertices in the input. In our experiments, for sim-
plicity, we will use the voxel-based method in both MLEs and 2D
environments.

A contribution of NEOGEN is the convexity relaxation parameter
that can be used to allow slightly non-convex regions. This de-
creases the total number of regions in exchange for having more
complex region shapes. Clearance information can also be added
to the navigation mesh if desired [Oliva and Pelechano 2013a].

Grid. As a baseline for our comparison, we have implemented
a simple grid method. It voxelizes the environment similarly to
Recast and NEOGEN, but it uses the walkable voxels directly as
navigation mesh regions. Therefore, each region inR is a square.

We include this method because grids are still frequently used for
path planning. They are easy to implement in 2D environments and
WEs [Sturtevant 2011], and they are a common choice for games
that are grid-based by design [Sturtevant 2012]. Another advan-
tage is that algorithms such as A* search can be optimized for grids
[Garcı́a et al. 2014; Harabor and Grastien 2011; Lee and Lawrence
2013; Sturtevant and Rabin 2016]. Many variants of A* are ei-
ther designed with grids in mind [Botea et al. 2004] or explained
in terms of grids [Koenig and Likhachev 2002; Koenig et al. 2004;
Likhachev et al. 2005]. However, grids are typically more dense
than other navigation meshes, which makes them less appropriate
for planning many paths in real-time.

6.2 Implementation

We have converted each navigation mesh program to a stand-alone
executable that reads an input file, computes a navigation mesh, and
returns the result. We have written a benchmark tool that communi-
cates with these programs, converts environments between different
file formats, and calculates all metrics. Also, the CDG requires the
walkable surfaces to be visible from all sides; to ensure this, we
extrude all input polygons downwards by a small amount.

An important detail is our choice of the mapping function m that is
used to compute coverage. For a point p in the navigation mesh, we
define m(p) as the nearest point in Efree above or below p up to a
threshold distance T . The threshold distance is required to prevent

96

Navigation Region Graph Overlap Pipeline Parameters Computational Storage Dynamic Arbitrary
mesh type type complexity complexity updates clearance

LCT Triangles Dual ofR No 2D→M None 2D:O(n
√
n) O(n) + +

(exact) (expected)

ECM Polygons Medial axis No 2D/MLE→M None 2D:O(n logn) O(n) + +
(exact) MLE:O(kn logn) O(kn)

CDG Disks Dual ofR Yes 3D→M 3D filtering ? O(S) +/- +
(voxel-based) Voxel precision

Min character radius
Min/max disk size

Recast Convex Dual ofR No 3D→M 3D filtering ? ? +/- -
polygons (voxel-based) Voxel precision

Region refinement
Character radius

NEOGEN (Convex) Dual ofR No 3D→MLE→M 3D filtering 2D:O(n2) O(n) +/- +/-
polygons (voxel-based Voxel precision MLE:O(n2) O(n)

+ exact) Convexity relaxation 3D: ?

Grid Squares Dual ofR No 3D→M 3D filtering ? O(S) +/- -
(voxel-based) Voxel precision

Table 1: Overview of the navigation meshes compared in this paper. For the rightmost columns, ‘+’ means that a property is supported in the
current implementation, ‘+/-’ means that a property could be added in theory, and ‘-’ means that a property is not supported by definition.

erroneous points of R from getting mapped onto surfaces that are
too far away. We choose a value of T = 1m because the vertical
clearance is at least 2 m in all our test environments. Admittedly,
this choice for m requires that the height coordinates of the naviga-
tion mesh are sufficiently close to the ground truth. It may fail in
environments with gradual yet large height differences that are not
captured by the navigation mesh. (In 2D environments, T can be
ignored because a vertical mapping is already unambiguous.)

We have implemented our coverage metrics using a CGAL-based
program [CGAL 2016] that can compute the intersection of two
OBJ files based on the threshold distance T . For this program, we
approximated the disks of the CDG by polygons of 16 vertices. We
used inner approximations: the approximated disks were smaller
than the actual disks. This leads to slightly lower numbers for cov-
erage, incorrect area, and overlap, but the chosen precision is suffi-
cient for comparative purposes.

6.3 Environments

We have computed navigation meshes for the 2D and 3D input en-
vironments shown in Figures 3 and 4, which range in scale and
complexity. Due to space constraints, we focus on environments
that have appeared in previous publications. To test for scalability,
we have also added randomly generated 2D mazes of various sizes,
inspired by Sturtevant [2012]. In an extended publication, we will
propose a more comprehensive set of benchmark environments. We
have converted each environment to a clean representation of Efree,
subdivided into layers whenever necessary. The corresponding OBJ
files are included in the supplementary file of this paper.

6.4 Results

The full set of results can be found in the attached supplementary
file. Tables 2 and 3 show the results for coverage and connectiv-
ity, and Tables 4 and 5 show the results for complexity and perfor-
mance. We will now highlight a number of observations.

Coverage. We have chosen our parameters to maximize coverage
(see Appendix A). Still, in terms of absolute values, the voxel-based
methods sometimes missed large areas or covered large incorrect
parts, up to hundreds of square meters in large enviroments. How-
ever, the relative coverage was still high (typically over 90%).

The maze environments are an exception: even though their free
space was perfectly aligned with grid cells of 1×1m, the CDG and
Recast could not capture them accurately. However, these mazes
are quite detailed relative to their size, so a finer grid resolution
could improve the results. NEOGEN generally yielded better cov-
erage due to its extra processing step per layer. It would be interest-
ing to let methods automatically choose an appropriate resolution
based on a user-specified balance between coverage and perfor-
mance. A theoretically stronger alternative would be to reconstruct
Efree without relying on a grid resolution.

Connectivity. Recast and NEOGEN captured connectivity quite
well for most environments, except in the mazes where each acci-
dental gap causes parts to become disconnected. For the CDG, the
graph usually contained many connected components, and gaps in
the covered space led to a large number of boundaries. The grid
also contained unexpected gaps at times, due to small errors in the
current implementation. Still, the grid method works sufficiently
well for the purpose of a comparison.

It is motivating to see that bad connectivity values corresponded to
navigation meshes that were also visually incorrect. For example,
Recast gave overlapping regions in some mazes, and it accidentally
connected layers vertically in the Tower environment. Still, we ac-
knowledge that metrics can never fully replace visual inspection.

Complexity. NEOGEN typically yielded the smallest graph in ex-
change for the highest average region complexity. This makes sense
because the algorithm is deliberately designed to produce a small
number of regions [Oliva and Pelechano 2011]. Its convexity relax-
ation parameter could enlarge this effect. The ECM often produced
smaller graphs than the LCT, while the LCT usually had a lower
total region complexity.

Recast appears to average between graph complexity and region
complexity using our current settings. The method contains several
parameters (such as the maximum number of vertices per region)
with which this balance can be controlled. Recast and NEOGEN
may not always capture all details of Efree, but this does generally
lead to simpler navigation meshes. This is useful for applications
in which low storage requirements and fast path planning are more
important than perfect coverage. In fact, exact methods could also
benefit from a pre-processing step that simplifies Efree.

97

(a) Military (n = 86,
d = 200× 200)

(b) University (n = 560,
d = 120× 80)

(c) Zelda (n = 437,
d = 100× 100)

(d) Zelda2x2 (n = 1,768,
d = 200× 200)

(e) Zelda4x4 (n = 7,072,
d = 400× 400)

(f) City (n = 2,094,
d = 500× 500)

(g) Maze8 (n = 28,
d = 7× 7)

(h) Maze16 (n = 82,
d = 15× 15)

(i) Maze32 (n = 356,
d = 31× 31)

(j) Maze64 (n = 1,390,
d = 63× 63)

(k) Maze128 (n =

5,574, d = 127× 127)

Figure 3: Top views of the 2D environments used in our experiments. The number of polygon vertices n and the physical dimensions d (in
meters) are shown in brackets.

(a) ParkingLot (n = 120,
d = 36× 21× 9)

(b) Library (n = 489,
d = 59.5× 23.9× 21.1)

(c) Oilrig (n = 1,644,
d = 273.6× 225.6× 84.4)

(d) Neogen1 (n = 5,473,
d = 63.5× 63.5× 15.7)

(e) Neogen2 (n = 1,089,
d = 63.5× 63.5× 31.1) (f) Neogen3 (n = 672,

d = 63.5× 63.5× 57.4) (g) Tower (n = 9,677,
d = 34.8×37.3×39.2)

(h) BigCity (n = 61,785,
d = 500× 500× 39.2)

Figure 4: Renders of the multi-layered environments used in our experiments. Each layer of an environment is shown in a different color.
Connections between layers are shown in red. The number of polygon vertices n and the physical dimensions d (width × depth × height, in
meters) are shown in brackets.

98

As expected, our grid implementation always gave the largest
graph, except in some of the mazes. This confirms that grids are
usually inefficient representations, although we acknowledge their
ease of use and their attractiveness for grid-aligned applications.

Performance. The LCT implementation was by far the fastest in all
environments, although it required pre-processing that we have not
included in our measurements. As expected, exact methods scaled
better to large environments than voxel-based methods: while the
LCT and ECM remained fast, the running times increased strongly
for Recast and the CDG in particular. NEOGEN was usually the
fastest voxel-based method. The BigCity environment challenged
the limits of all voxel-based methods: only Recast could produce a
navigation mesh using our settings. Increasing the voxel resolution
caused Recast to crash as well, most likely due to memory usage.
Recast can subdivide the environment into tiles to alleviate this, but
we have excluded this option to simplify our comparison.

The differences in scalability are difficult to judge because voxel-
based methods include the reconstruction of Efree in their algorithm.
Combined with the results for coverage, this indicates that obtain-
ing Efree without voxels is an interesting topic for future work.

7 Discussion

A limitation of our comparison lies in the current set of input en-
vironments. We have focused on examples from previous publi-
cations; these are all realistic scenarios that have been considered
interesting before. Also, we have deliberately only used ‘clean’
walkable environments and not raw 3D geometry, to allow a fair
comparison between exact and voxel-based methods for the same
input. The goal of this paper was not to provide an exhaustive set
of environments, or to expose all strengths and weaknesses of an
implementation. Ultimately, it would be good to create an open
database of input scenarios for researchers to use, similarly to the
ones that currently exist for local character steering [Singh et al.
2009] and grid-based A* search [Sturtevant 2012].

We would also like to investigate more types of metrics. For in-
stance, it would be useful to measure the efficiency of a navigation
mesh for path planning: how much time does it take to compute
paths in G, and how efficiently can these be converted to geomet-
ric routes using the regions of R? Another option is to look at
the quality of these routes: how short are they, and how well do
they correspond to real-life behavior? If shortness is important, a
dense grid may yield better results than a navigation mesh with a
small dual graph. Ultimately, for real-world applications, we would
like to quantify how well a navigation mesh captures the navigation
abilities of real humans. This is a challenging direction for future
work. We expect that not everything can be analyzed mechanically,
and that user studies will also be required.

Finally, to simplify the comparison, we have chosen a single set
of parameter settings for all methods. It would be interesting to
see how different settings influence the results for each method,
and how these settings can be optimized for particular metrics. For
example, Oliva and Pelechano have discussed how the voxel size
affects the results of Recast and NEOGEN [2013b]. We would like
to combine such ideas with the quantitative metrics of our paper.

8 Conclusions and Future Work

A navigation mesh enables path planning and crowd simulation
for walking characters in 2D and 3D environments. In this paper,
we have performed a comparative study of multiple state-of-the-art
navigation meshes. We have proposed properties by which a mesh
and its construction algorithm can be classified, and metrics that

measure the quality of a mesh in practice. We have used these com-
ponents to compare the Local Clearance Triangulation, the Explicit
Corridor Map, the Clearance Disk Graph, NEOGEN, and a grid.

While we intend to use more environments, metrics, and settings,
our results already suggest interesting properties. Voxel-based
methods can be tuned to yield good coverage, but they do not al-
ways preserve connectivity, and their construction time does not
seem to scale well to physically large environments. Furthermore,
grids are usually not space-efficient representations of Efree, al-
though they may be attractive for particular applications.

The goal of this paper was not to find ‘the best’ navigation mesh, but
to develop a way of comparing navigation meshes based on theo-
retical properties and quantitative metrics. Users may decide which
properties and metrics are the most relevant for their application.
We expect that this study will set a new standard for the evaluation
and development of navigation meshes, and that it can help users
choose an appropriate navigation mesh for particular applications.

Aside from the discussion points mentioned in Section 7, a topic
for future work lies in developing exact algorithms that automat-
ically extract the walkable space from arbitrary 3D input in real-
time. Our experiments suggest that voxel-based approaches do not
always preserve coverage and connectivity, and that they are not
very scalable to large environments. However, an advantage of
voxelization is that the input is automatically simplified to a cer-
tain level of precision. Exact filtering algorithms should yield a
perfect representation of Efree within provable time bounds, but they
may be sensitive to small details or imprecisions in the input (such
as gaps or overlap). In the end, it may turn out that the best solution
is to combine various approaches, e.g. a filtering algorithm without
voxels that is based on rounded coordinates.

Acknowledgements

We thank all research groups involved in this study for sharing their
source code and environments, and for joining us in helpful discus-
sions. Furthermore, we thank Mihai Polak and Arne Hillebrand for
helping us with pre-processing 3D geometry and computing cover-
age using their software.

References

ALI, S., NISHINO, K., MANOCHA, D., AND SHAH, M. 2013.
Modeling, Simulation and Visual Analysis of Crowds: A Multi-
disciplinary Perspective. Springer.

BERSETH, G., KAPADIA, M., AND FALOUTSOS, P. 2015. AC-
CLMesh: Curvature-based navigation mesh generation. In Proc.
8th ACM SIGGRAPH Conf. on Motion in Games, 97–102.

BOOST, 2015. The Boost C++ library. http://www.boost.org/.

BOTEA, A., MÜLLER, M., AND SCHAEFFER, J. 2004. Near opti-
mal hierarchical path-finding. Journal of Game Development 1,
7–28.

BUDDE, S. 2013. Automatic generation of jump links in arbi-
trary 3D environments for navigation meshes. Master’s thesis,
Humboldt-Universität zu Berlin.

CGAL, 2016. The Computational Geometry Algorithms Library.
http://www.cgal.org/.

CURTIS, S., BEST, A., AND MANOCHA, D. 2014. Menge: A
modular framework for simulating crowd movement. Tech. rep.,
University of North Carolina at Chapel Hill.

99

http://www.boost.org/
http://www.cgal.org/

DEUSDADO, L., FERNANDES, A. R., AND BELO, O. 2008. Path
planning for complex 3D multilevel environments. Proc. 24th
Spring Conf. on Computer Graphics, 187–194.

GARCÍA, F. M., KAPADIA, M., AND BADLER, N. M. 2014. GPU-
based dynamic search on adaptive resolution grids. In Proc.
IEEE Int. Conf. on Robotics and Automation, 1631–1638.

GERAERTS, R. 2010. Planning short paths with clearance using
Explicit Corridors. In Proc. IEEE Int. Conf. on Robotics and
Automation, 1997–2004.

HALE, D. H., AND YOUNGBLOOD, G. M. 2009. Full 3D spacial
decomposition for the generation of navigation meshes. In Proc.
5th Artificial Intelligence and Interactive Digital Entertainment
Conf., 143–147.

HALE, D. H., YOUNGBLOOD, G. M., AND DIXIT, P. N. 2008.
Automatically-generated convex region decomposition for real-
time spatial agent navigation in virtual worlds. In Proc. 4th Ar-
tificial Intelligence and Interactive Digital Entertainment Conf.,
173–178.

HARABOR, D., AND GRASTIEN, A. 2011. Online graph prun-
ing for pathfinding on grid maps. In Proc. 52th AAAI Conf. on
Artificial Intelligence, 1114–1119.

HART, P., NILSSON, N., AND RAPHAEL, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4, 2, 100–107.

HILLEBRAND, A. 2012. Separating a polygonal environment into
a multi-layered environment. Master’s thesis, Utrecht University,
The Netherlands.

KALLMANN, M. 2014. Dynamic and robust Local Clearance Tri-
angulations. ACM Transactions on Graphics 33, 5.

KAPADIA, M., PELECHANO, N., ALLBECK, J., AND BADLER,
N. I. 2015. Virtual Crowds: Steps Toward Behavioral Realism.
Morgan & Claypool Publishers.

KAVRAKI, L. E., ŠVESTKA, P., LATOMBE, J.-C., AND OVER-
MARS, M. H. 1996. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12, 4, 566–580.

KOENIG, S., AND LIKHACHEV, M. 2002. D* Lite. In Proc. AAAI
Conf. of Artificial Intelligence, 476–483.

KOENIG, S., LIKHACHEV, M., AND FURCY, D. 2004. Lifelong
Planning A*. Artificial Intelligence 155, 1-2, 93–146.

LAMARCHE, F. 2009. TopoPlan: a topological path planner for
real time human navigation under floor and ceiling constraints.
Computer Graphics Forum 28, 2, 649–658.

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge Univer-
sity Press.

LEE, W., AND LAWRENCE, R. 2013. Fast grid-based path finding
for video games. In Advances in Artificial Intelligence, vol. 7884
of Lecture Notes in Computer Science. Springer, 100–111.

LIKHACHEV, M., FERGUSON, D., GORDON, G., STENTZ, A.,
AND THRUN, S. 2005. Anytime Dynamic A*: An anytime,
replanning algorithm. In Proc. Int. Conf. on Automated Planning
and Scheduling, 262–271.

LOPEZ, T., LAMARCHE, F., AND LI, T.-Y. 2012. Space-time
planning in changing environments: using dynamic objects for
accessibility. Computer Animation and Virtual Worlds 23, 87–
99.

LOZANO-PEREZ, T. 1983. Spatial planning: A configuration space
approach. IEEE Transactions on Computing 32, 2, 108–120.

MONONEN, M., 2014. Recast Navigation. https://github.com/
memononen/recastnavigation/.

OLIVA, R., AND PELECHANO, N. 2011. Automatic generation
of suboptimal navmeshes. In Proc. 4th Int. Conf. on Motion in
Games, 328–339.

OLIVA, R., AND PELECHANO, N. 2013. A generalized exact
arbitrary clearance technique for navigation meshes. In Proc.
6th Int. Conf. on Motion in Games, 103–110.

OLIVA, R., AND PELECHANO, N. 2013. NEOGEN: Near optimal
generator of navigation meshes for 3D multi-layered environ-
ments. Computers & Graphics 37, 5, 403–412.

PELECHANO, N., ALLBECK, J. M., KAPADIA, M., AND
BADLER, N. I. 2016. Simulating Heterogeneous Crowds with
Interactive Behaviors. CRC Press.

PETTRÉ, J., LAUMOND, J., AND THALMANN, D. 2005. A navi-
gation graph for real-time crowd animation on multilayered and
uneven terrain. In Proc. 1st Int. Workshop on Crowd Simulation,
81–89.

POLAK, R. M. 2016. Extracting walkable areas from 3D environ-
ments. Master’s thesis, Utrecht University.

RICKS, B. C., AND EGBERT, P. K. 2014. A whole surface ap-
proach to crowd simulation on arbitrary topologies. IEEE Trans.
Visualization and Computer Graphics 20, 159–171.

SINGH, S., KAPADIA, M., FALOUTSOS, P., AND REINMAN, G.
2009. An open framework for developing, evaluating, and shar-
ing steering algorithms. In Proc. 2nd Int. Workshop on Motion
in Games, 158–169.

SNOOK, G. 2000. Simplified 3D movement and pathfinding using
navigation meshes. In Game Programming Gems, M. DeLoura,
Ed. Charles River Media, 288–304.

STURTEVANT, N., AND RABIN, S. 2016. Canonical orderings on
grids. In Proc. Int. Joint Conf. on Artificial Intelligence, 683–
689.

STURTEVANT, N. 2011. A sparse grid representation for dynamic
three-dimensional worlds. In Proc. AAAI Conf. on Artificial In-
telligence and Interactive Digital Entertainment.

STURTEVANT, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games 4,
2, 144–148.

THALMANN, D., AND MUSSE, S. R. 2013. Crowd Simulation,
2 ed. Springer.

VAN TOLL, W. G., COOK IV, A. F., AND GERAERTS, R. 2011.
Navigation meshes for realistic multi-layered environments. In
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
3526–3532.

VAN TOLL, W., JAKLIN, N., AND GERAERTS, R. 2015. Towards
believable crowds: A generic multi-level framework for agent
navigation. In ASCI.OPEN.

TOZOUR, P. 2002. Building a near-optimal navigation mesh. In AI
Game Programming Wisdom, S. Rabin, Ed. Charles River Me-
dia, 171–185.

UNITY3D GAME ENGINE, 2016. http://www.unity3d.com/.

100

https://github.com/memononen/recastnavigation/
https://github.com/memononen/recastnavigation/
http://www.unity3d.com/

