27,085 research outputs found
Renormalization-group approach to superconductivity: from weak to strong electron-phonon coupling
We present the numerical solution of the renormalization group (RG) equations
derived in Ref. [1], for the problem of superconductivity in the presence of
both electron-electron and electron-phonon coupling at zero temperature. We
study the instability of a Fermi liquid to a superconductor and the RG flow of
the couplings in presence of retardation effects and the crossover from weak to
strong coupling. We show that our numerical results provide an ansatz for the
analytic solution of the problem in the asymptotic limits of weak and strong
coupling.Comment: 8 pages, 3 figures, conference proceedings for the Electron
Correlations and Materials Properties, in Kos, Greece, July 5-9, 200
Eigenstructure Assignment Based Controllers Applied to Flexible Spacecraft
The objective of this paper is to evaluate the behaviour of a controller designed using a parametric Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate the deflections and vibrations suffered by external appendages in flexible spacecraft while performing attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a flexible spacecraft is considered a close approximation to the real system. During the process of controller evaluation, the design process has also been taken into account as a factor in assessing the robustness of the system
TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha
The bacterial type VI secretion system (T6SS) delivers effectors into eukaryotic host cells or toxins into bacterial competitor for survival and fitness. The T6SS is positively regulated by the threonine phosphorylation pathway (TPP) and negatively by the T6SS-accessory protein TagF. Here, we studied the mechanisms underlying TagF-mediated T6SS repression in two distinct bacterial pathogens, Agrobacterium tumefaciens and Pseudomonas aeruginosa. We found that in A. tumefaciens, T6SS toxin secretion and T6SS-dependent antibacterial activity are suppressed by a two-domain chimeric protein consisting of TagF and PppA, a putative phosphatase. Remarkably, this TagF domain is sufficient to post-translationally repress the T6SS, and this inhibition is independent of TPP. This repression requires interaction with a cytoplasmic protein, Fha, critical for activating T6SS assembly. In P. aeruginosa, PppA and TagF are two distinct proteins that repress T6SS in a TPP-dependent and -independent pathways, respectively. P. aeruginosa TagF interacts with Fha1, suggesting that formation of this complex represents a conserved TagF-mediated regulatory mechanism. Using TagF variants with substitutions of conserved amino acid residues at predicted protein-protein interaction interfaces, we uncovered evidence that the TagF-Fha interaction is critical for TagF-mediated T6SS repression in both bacteria. TagF inhibits T6SS without affecting T6SS protein abundance in A. tumefaciens, but TagF overexpression reduces the protein levels of all analyzed T6SS components in P. aeruginosa. Our results indicate that TagF interacts with Fha, which in turn could impact different stages of T6SS assembly in different bacteria, possibly reflecting an evolutionary divergence in T6SS control
Dynamical Properties of a Growing Surface on a Random Substrate
The dynamics of the discrete Gaussian model for the surface of a crystal
deposited on a disordered substrate is investigated by Monte Carlo simulations.
The mobility of the growing surface was studied as a function of a small
driving force and temperature . A continuous transition is found from
high-temperature phase characterized by linear response to a low-temperature
phase with nonlinear, temperature dependent response. In the simulated regime
of driving force the numerical results are in general agreement with recent
dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
Crystallization and preliminary crystallographic analysis of the DNA gyrase B protein from B-stearothermophilus
DNA gyrase B (GyrB) from B. stearothermophilus has been crystallized in the presence of the non-hydrolyzable ATP analogue, 5'-adenylpl-beta-gamma-imidodiphosphate (ADPNP), by the dialysis method. A complete native data set to 3.7 Angstrom has been collected from crystals which belonged to the cubic space group I23 with unit-cell dimension a = 250.6 Angstrom. Self-rotation function analysis indicates the position of a molecular twofold axis. Low-resolution data sets of a thimerosal and a selenomethionine derivative have also been analysed. The heavy-atom positions are consistent with one dimer in the asymmetric unit
Tunneling of correlated electrons in ultra high magnetic field
Effects of the electron-electron interaction on tunneling into a metal in
ultra-high magnetic field (ultra-quantum limit) are studied. The range of the
interaction is found to have a decisive effect both on the nature of the
field-induced instability of the ground state and on the properties of the
system at energies above the corresponding gap. For a short-range repulsive
interaction, tunneling is dominated by the renormalization of the coupling
constant, which leads eventually to the charge-density wave instability. For a
long-range interaction, there exists an intermediate energy range in which the
conductance obeys a power-law scaling form, similar to that of a 1D Luttinger
liquid. The exponent is magnetic-field dependent, and more surprisingly, may be
positive or negative, i. e., interactions may either suppress or enhance the
tunneling conductance compared to its non-interacting value. At energies near
the gap, scaling breaks down and tunneling is again dominated by the
instability, which in this case is an (anisotropic) Wigner crystal instability.Comment: 4 pages, 2 .eps figure
b-quark decay in the collinear approximation
The semileptonic decay of a b-quark, b--> c l nu, is considered in the
relativistic limit where the decay products are approximately collinear.
Analytic results for the double differential lepton energy distributions are
given for finite charm-quark mass. Their use for the fast simulation of
isolated lepton backgrounds from heavy quark decays is discussed.Comment: 7 pages, 1 figure, submitted to Phys.Rev.
Phase Diagram of the Holstein-Hubbard Two-Leg Ladder
Using a functional renormalization group method, we obtain the phase diagram
of the two-leg ladder system within the Holstein-Hubbard model, which includes
both electron-electron and electron-phonon interactions. Our renormalization
group technique allows us to analyze the problem for both weak and strong
electron-phonon coupling. We show that, in contrast results from conventional
weak coupling studies, electron-phonon interactions can dominate
electron-electron interactions because of retardation effects.Comment: 4 page
ADAMTS13 mutations identified in familial TTP patients result in loss of VWFâcleaving protease activity
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106109/1/jth03964.pd
Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency
We report on a planar metamaterial, the resonant transmission frequency of which does not depend on the polarization and angle of incidence of electromagnetic waves. The resonance results from the excitation of high-Q antisymmetric trapped current mode and shows sharp phase dispersion characteristic to Fano-type resonances of the electromagnetically induced transparency phenomenon
- âŠ