390 research outputs found

    HyPLC: Hybrid Programmable Logic Controller Program Translation for Verification

    Full text link
    Programmable Logic Controllers (PLCs) provide a prominent choice of implementation platform for safety-critical industrial control systems. Formal verification provides ways of establishing correctness guarantees, which can be quite important for such safety-critical applications. But since PLC code does not include an analytic model of the system plant, their verification is limited to discrete properties. In this paper, we, thus, start the other way around with hybrid programs that include continuous plant models in addition to discrete control algorithms. Even deep correctness properties of hybrid programs can be formally verified in the theorem prover KeYmaera X that implements differential dynamic logic, dL, for hybrid programs. After verifying the hybrid program, we now present an approach for translating hybrid programs into PLC code. The new tool, HyPLC, implements this translation of discrete control code of verified hybrid program models to PLC controller code and, vice versa, the translation of existing PLC code into the discrete control actions for a hybrid program given an additional input of the continuous dynamics of the system to be verified. This approach allows for the generation of real controller code while preserving, by compilation, the correctness of a valid and verified hybrid program. PLCs are common cyber-physical interfaces for safety-critical industrial control applications, and HyPLC serves as a pragmatic tool for bridging formal verification of complex cyber-physical systems at the algorithmic level of hybrid programs with the execution layer of concrete PLC implementations.Comment: 13 pages, 9 figures. ICCPS 201

    An accelerator facility for intermediate energy proton irradiation and testing of nuclear materials

    Full text link
    The bulk irradiation of materials with 10-30 MeV protons promises to advance the study of radiation damage for fission and fusion power plants. Intermediate energy proton beams can now be dedicated to materials irradiation within university-scale laboratories. This paper describes the first such facility, with an Ionetix ION-12SC cyclotron producing 12 MeV proton beams. Samples are mm-scale tensile specimens with thicknesses up to 300 um, mounted to a cooled beam target with control over temperature. A specialized tensile tester for radioactive specimens at high temperature (500+ {\deg}C) and/or vacuum represents the conditions in fission and fusion systems, while a digital image correlation system remotely measures strain. Overall, the facility provides university-scale irradiation and testing capability with intermediate energy protons to complement traditional in-core fission reactor and micro-scale ion irradiation. This facility demonstrates that bulk proton irradiation is a scalable and effective approach for nuclear materials research, down-selection, and qualification.Comment: Submitted to NIM B journa

    Protocol for an intervention development and pilot implementation evaluation study of an e-health solution to improve newborn care quality and survival in two low-resource settings, Malawi and Zimbabwe: Neotree.

    Get PDF
    INTRODUCTION: Every year 2.4 million deaths occur worldwide in babies younger than 28 days. Approximately 70% of these deaths occur in low-resource settings because of failure to implement evidence-based interventions. Digital health technologies may offer an implementation solution. Since 2014, we have worked in Bangladesh, Malawi, Zimbabwe and the UK to develop and pilot Neotree: an android app with accompanying data visualisation, linkage and export. Its low-cost hardware and state-of-the-art software are used to improve bedside postnatal care and to provide insights into population health trends, to impact wider policy and practice. METHODS AND ANALYSIS: This is a mixed methods (1) intervention codevelopment and optimisation and (2) pilot implementation evaluation (including economic evaluation) study. Neotree will be implemented in two hospitals in Zimbabwe, and one in Malawi. Over the 2-year study period clinical and demographic newborn data will be collected via Neotree, in addition to behavioural science informed qualitative and quantitative implementation evaluation and measures of cost, newborn care quality and usability. Neotree clinical decision support algorithms will be optimised according to best available evidence and clinical validation studies. ETHICS AND DISSEMINATION: This is a Wellcome Trust funded project (215742_Z_19_Z). Research ethics approvals have been obtained: Malawi College of Medicine Research and Ethics Committee (P.01/20/2909; P.02/19/2613); UCL (17123/001, 6681/001, 5019/004); Medical Research Council Zimbabwe (MRCZ/A/2570), BRTI and JREC institutional review boards (AP155/2020; JREC/327/19), Sally Mugabe Hospital Ethics Committee (071119/64; 250418/48). Results will be disseminated via academic publications and public and policy engagement activities. In this study, the care for an estimated 15 000 babies across three sites will be impacted. TRIAL REGISTRATION NUMBER: NCT0512707; Pre-results

    Factors affecting female space use in ten populations of prairie chickens

    Get PDF
    Citation: Winder, V. L., Carrlson, K. M., Gregory, A. J., Hagen, C. A., Haukos, D. A., Kesler, D. C., . . . Sandercock, B. K. (2015). Factors affecting female space use in ten populations of prairie chickens. Ecosphere, 6(9), 17. doi:10.1890/es14-00536.1Conservation of wildlife depends on an understanding of the interactions between animal movements and key landscape factors. Habitat requirements of wide-ranging species often vary spatially, but quantitative assessment of variation among replicated studies at multiple sites is rare. We investigated patterns of space use for 10 populations of two closely related species of prairie grouse: Greater Prairie-Chickens (Tympanuchus cupido) and Lesser Prairie-Chickens (T. pallidicinctus). Prairie chickens require large, intact tracts of native grasslands, and are umbrella species for conservation of prairie ecosystems in North America. We used resource utilization functions to investigate space use by female prairie chickens during the 6-month breeding season from March through August in relation to lek sites, habitat conditions, and anthropogenic development. Our analysis included data from 382 radio-marked individuals across a major portion of the extant range. Our project is a unique opportunity to study comparative space use of prairie chickens, and we employed standardized methods that facilitated direct comparisons across an ecological gradient of study sites. Median home range size of females varied similar to 10-fold across 10 sites (3.6-36.7 km(2)), and home ranges tended to be larger at sites with higher annual precipitation. Proximity to lek sites was a strong and consistent predictor of space use for female prairie chickens at all 10 sites. The relative importance of other predictors of space use varied among sites, indicating that generalized habitat management guidelines may not be appropriate for these two species. Prairie chickens actively selected for prairie habitats, even at sites where similar to 90% of the land cover within the study area was prairie. A majority of the females monitored in our study (>95%) had activity centers within 5 km of leks, suggesting that conservation efforts can be effectively concentrated near active lek sites. Our data on female space use suggest that lek surveys of male prairie chickens can indirectly assess habitat suitability for females during the breeding season. Lek monitoring and surveys for new leks provide information on population trends, but can also guide management actions aimed at improving nesting and brood-rearing habitats

    Engineering egress data considering pedestrians with reduced mobility

    Get PDF
    To quantify the evacuation process, evacuation practitioners use engineering egressdata describing the occupant movement characteristics. These data are typicallybased to young and fit populations. However, the movement abilities of occupantswho might be involved in evacuations are becoming more variable—with the buildingpopulations of today typically including increasing numbers of individuals: withimpairments or who are otherwise elderly or generally less mobile. Thus, there willbe an increasing proportion of building occupants with reduced ability to egress. Forsafe evacuation, there is therefore a need to provide valid engineering egress dataconsidering pedestrians with disabilities. Gwynne and Boyce recently compiled aseries of data sets related to the evacuation process to support practitioner activitiesin the chapter Engineering Data in the SFPE Handbook of Fire Protection Engineering.This paper supplements these data sets by providing information on and presentingdata obtained from additional research related to the premovement and horizontalmovement of participants with physical-, cognitive-, or age-related disabilities. Theaim is to provide an overview of currently available data sets related to, and keyfactors affecting the egress performance of, mixed ability populations which could beused to guide fire safety engineering decisions in the context of building design

    Sex Differences in Neural Activation to Facial Expressions Denoting Contempt and Disgust

    Get PDF
    The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt) than women. We performed an experiment using functional magnetic resonance imaging (fMRI), in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus), anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions), in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our results suggest a neural basis for sex differences in moral sensitivity regarding hierarchy on the one hand and physical purity on the other

    Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PEA-15 is a phosphoprotein that binds and regulates ERK MAP kinase and RSK2 and is highly expressed throughout the brain. PEA-15 alters c-Fos and CREB-mediated transcription as a result of these interactions. To determine if PEA-15 contributes to the function of the nervous system we tested mice lacking PEA-15 in a series of experiments designed to measure learning, sensory/motor function, and stress reactivity.</p> <p>Results</p> <p>We report that PEA-15 null mice exhibited impaired learning in three distinct spatial tasks, while they exhibited normal fear conditioning, passive avoidance, egocentric navigation, and odor discrimination. PEA-15 null mice also had deficient forepaw strength and in limited instances, heightened stress reactivity and/or anxiety. However, these non-cognitive variables did not appear to account for the observed spatial learning impairments. The null mice maintained normal weight, pain sensitivity, and coordination when compared to wild type controls.</p> <p>Conclusion</p> <p>We found that PEA-15 null mice have spatial learning disabilities that are similar to those of mice where ERK or RSK2 function is impaired. We suggest PEA-15 may be an essential regulator of ERK-dependent spatial learning.</p
    corecore