8,313 research outputs found

    Noncommutative fermions and Morita equivalence

    Get PDF
    We study the Morita equivalence for fermion theories on noncommutative two-tori. For rational values of the Ξ\theta parameter (in appropriate units) we show the equivalence between an abelian noncommutative fermion theory and a nonabelian theory of twisted fermions on ordinary space. We study the chiral anomaly and compute the determinant of the Dirac operator in the dual theories showing that the Morita equivalence also holds at this level.Comment: 12 pages, LaTex file, no figures. Minor corrections, version to appear in Phys. Lett.

    Negative-energy perturbations in cylindrical equilibria with a radial electric field

    Get PDF
    The impact of an equilibrium radial electric field EE on negative-energy perturbations (NEPs) (which are potentially dangerous because they can lead to either linear or nonlinear explosive instabilities) in cylindrical equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic theory. It turns out that for wave vectors with a non-vanishing component parallel to the magnetic field the conditions for the existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D. Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for the existence of perpendicular NEPs, which are found to be the most important perturbations, is modified. For ∣eiÏ•âˆŁâ‰ˆTi|e_i\phi|\approx T_i (ϕ\phi is the electrostatic potential) and Ti/Te>ÎČc≈P/(B2/8π)T_i/T_e > \beta_c\approx P/(B^2/8\pi) (PP is the total plasma pressure), a case which is of operational interest in magnetic confinement systems, the existence of perpendicular NEPs depends on eÎœEe_\nu E, where eÎœe_\nu is the charge of the particle species Îœ\nu. In this case the electric field can reduce the NEPs activity in the edge region of tokamaklike and stellaratorlike equilibria with identical parabolic pressure profiles, the reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late

    Negative-Energy Perturbations in Circularly Cylindrical Equilibria within the Framework of Maxwell-Drift Kinetic Theory

    Full text link
    The conditions for the existence of negative-energy perturbations (which could be nonlinearly unstable and cause anomalous transport) are investigated in the framework of linearized collisionless Maxwell-drift kinetic theory for the case of equilibria of magnetically confined, circularly cylindrical plasmas and vanishing initial field perturbations. For wave vectors with a non-vanishing component parallel to the magnetic field, the plane equilibrium conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290 (1994)]) are shown to remain valid, while the condition for perpendicular perturbations (which are found to be the most important modes) is modified. Consequently, besides the tokamak equilibrium regime in which the existence of negative-energy perturbations is related to the threshold value of 2/3 of the quantity ηΜ=∂ln⁥TΜ∂ln⁥NÎœ\eta_\nu = \frac {\partial \ln T_\nu} {\partial \ln N_\nu}, a new regime appears, not present in plane equilibria, in which negative-energy perturbations exist for {\em any} value of ηΜ\eta_\nu. For various analytic cold-ion tokamak equilibria a substantial fraction of thermal electrons are associated with negative-energy perturbations (active particles). In particular, for linearly stable equilibria of a paramagnetic plasma with flat electron temperature profile (ηe=0\eta_e=0), the entire velocity space is occupied by active electrons. The part of the velocity space occupied by active particles increases from the center to the plasma edge and is larger in a paramagnetic plasma than in a diamagnetic plasma with the same pressure profile. It is also shown that, unlike in plane equilibria, negative-energy perturbations exist in force-free reversed-field pinch equilibria with a substantial fraction of active particles.Comment: 31 pages, late

    Vacuum solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory

    Full text link
    The classification of certain class of static solutions for the Einstein-Gauss-Bonnet theory in vacuum is presented. The spacelike section of the class of metrics under consideration is a warped product of the real line with a nontrivial base manifold. For arbitrary values of the Gauss-Bonnet coupling, the base manifold must be Einstein with an additional scalar restriction. The geometry of the boundary can be relaxed only when the Gauss-Bonnet coupling is related with the cosmological and Newton constants, so that the theory admits a unique maximally symmetric solution. This additional freedom in the boundary metric allows the existence of three main branches of geometries in the bulk, containing new black holes and wormholes in vacuum.Comment: Prepared for the proceedings of the 7th Alexander Friedmann International Seminar on Gravitation and Cosmology, July 2008, Joao Pessoa, Brasil. 4 pages, References adde

    Particle-vortex dynamics in noncommutative space

    Get PDF
    We study the problem of a charged particle in the presence of a uniform magnetic field plus a vortex in noncommutative planar space considering the two possible non-commutative extensions of the corresponding Hamiltonian, namely the ``fundamental'' and the ``antifundamental'' representations. Using a Fock space formalism we construct eigenfunctions and eigenvalues finding in each case half of the states existing in the ordinary space case. In the limit of ξ→0\theta \to 0 we recover the two classes of states found in ordinary space, relevant for the study of anyon physics.Comment: 13 pages, no figures, plain LaTeX. References adde

    Asymptotic Bethe equations for open boundaries in planar AdS/CFT

    Get PDF
    We solve, by means of a nested coordinate Bethe ansatz, the open-boundaries scattering theory describing the excitations of a free open string propagating in AdS5×S5AdS_5\times S^5, carrying large angular momentum J=J56J=J_{56}, and ending on a maximal giant graviton whose angular momentum is in the same plane. We thus obtain the all-loop Bethe equations describing the spectrum, for JJ finite but large, of the energies of such strings, or equivalently, on the gauge side of the AdS/CFT correspondence, the anomalous dimensions of certain operators built using the epsilon tensor of SU(N). We also give the Bethe equations for strings ending on a probe D7-brane, corresponding to meson-like operators in an N=2\mathcal N=2 gauge theory with fundamental matter.Comment: 30 pages. v2: minor changes and discussion section added, J.Phys.A version

    A monopole solution from noncommutative multi-instantons

    Get PDF
    We extend the relation between instanton and monopole solutions of the selfduality equations in SU(2) gauge theory to noncommutative space-times. Using this approach and starting from a noncommutative multi-instanton solution we construct a U(2) monopole configuration which lives in 3 dimensional ordinary space. This configuration resembles the Wu-Yang monopole and satisfies the selfduality (Bogomol'nyi) equations for a U(2) Yang-Mills-Higgs system.Comment: 19 pages; title and abstract changed, brane interpretation corrected. Version to appear in JHE

    On the Price of Anarchy of Highly Congested Nonatomic Network Games

    Full text link
    We consider nonatomic network games with one source and one destination. We examine the asymptotic behavior of the price of anarchy as the inflow increases. In accordance with some empirical observations, we show that, under suitable conditions, the price of anarchy is asymptotic to one. We show with some counterexamples that this is not always the case. The counterexamples occur in very simple parallel graphs.Comment: 26 pages, 6 figure

    Geometry and topology of bubble solutions from gauge theory

    Get PDF
    We study how geometrical and topological aspects of certain 1/2 BPS type IIB supergravity solutions are captured by the N=4 Super Yang-Mills gauge theory in the AdS/CFT context. The type IIB solutions are completely characterized by arbitrary droplets in a plane and we consider, in particular, concentric droplets. We probe the dual 1/2 BPS operators of the gauge theory with single traces and extract their one-loop anomalous dimensions. The action of the one-loop dilatation operator can be reformulated as the Hamiltonian of a bosonic lattice. The operators defining the Hamiltonian encode the topology of the droplet. The axial symmetry of the droplets turns out to be essential for obtaining the spectrum of the Hamiltonians. In appropriate BMN limits, the near-BPS spectrum reproduces the spectrum of near-BPS string excitations propagating along each individual edge of the droplet of the dual geometric background. We also study semiclassical regimes for the Hamiltonians. We show that for droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents

    Integrable achiral D5-brane reflections and asymptotic Bethe equations

    Get PDF
    We study the reflection of magnons from a D5-brane in the framework of the AdS/CFT correspondence. We consider two possible orientations of the D5-brane with respect to the reference vacuum state, namely vacuum states aligned along "vertical" and "horizontal" directions. We show that the reflections are of the achiral type. We also show that the reflection matrices satisfy the boundary Yang-Baxter equations for both orientations. In the horizontal case the reflection matrix can be interpreted in terms of a bulk S-matrix, S(p, -p), and factorizability of boundary scattering therefore follows from that of bulk scattering. Finally, we solve the nested coordinate Bethe ansatz for the system in the vertical case to find the Bethe equations. In the horizontal case, the Bethe equations are of the same form as those for the closed string.Comment: 27 pages, 4 figures, v2: published versio
    • 

    corecore