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1. Introduction

Soliton and instanton solutions in noncommutative field theories have been the object of

many investigations in recent years (see [1, 2] for a complete list of references). Whenever

the space-time dimension is even, a connection between the noncommutative algebra and

that of creation and annihilation operators in Fock space can be exploited in order to

find explicit exact solutions which are the natural extensions of those already constructed

in ordinary space. In particular, after the pioneering work of Nekrasov and Schwarz [3]

on noncommutative instantons, different approaches have been followed to construct and

analyze explicit selfdual solutions [4]–[16].

Concerning solitons, and apart from vortices (see [17] for a complete list of references on

this issue), noncommutative monopole configurations have been extensively discussed [18]–

[26]. In particular, BPS monopole solutions have been constructed in [24] for noncommuta-

tive U(1) and U(2) gauge theories by solving the noncommutative extension of the so-called

Nahm equations. An interesting correspondence between the noncommutative monopole

solution and a D1 string stretched between D3 branes was revealed by this work.

As it is well known, conventional instanton and monopole solutions can be related.

Geometrically, the idea is that if one looks for solutions of the selfduality equations with

a U(1) isometry kµ, then a monopole configuration of a Yang-Mills-Higgs system can be

obtained with Φ = kµAµ playing the role of the Higgs scalar in the adjoint. When the

isometry is chosen to be along the euclidean time (Φ = A0) the selfduality equations become

the Bogomol’nyi equations for a Yang-Mills-Higgs system in the Prasad-Sommerfield limit.

This procedure, originally developed in Refs. [35], starting from an axially symmetric multi-

instanton solution with charge q [27], was afterwards extended by Nahm [29] to the ADHM

multi-instanton solution. A different choice for kµ leading to hyperbolic monopoles was

originally proposed by Atiyah [30].

– 1 –
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The extension of Nahm’s construction to the noncommutative case has been developed

in [22]–[24], based on the noncommutative version of the ADHM construction developed

in [3]. In the U(1) case, which was studied in detail in [22], a soliton solution having zero

magnetic charge was constructed. It can be interpreted as consisting of a monopole attached

to a string that runs off to infinity. In order to see whether truly magnetically charged

isolated configurations in 3-dimensional noncommutative space can be obtained from 4-

dimensional noncommutative instantons we shall extend in this work Manton’s proposal of

considering the infinite charge limit (q →∞) of Witten multi-instanton solution. We will

use the noncommutative version of Witten’s solution constructed in [36], which we review

in section 2. Then, in section 3 we discuss the choice of the appropriate gauge condition and

discover, as a byproduct, a very peculiar situation that can arise for constant field strengths

in noncommutative gauge theories. Indeed, we show that under certain conditions, there

exist gauge orbits consisting of just one point. The q → ∞ limit leading to a monopole

configuration is considered in section 4 where we write the BPS equations obeyed by the

soliton solution. We discuss the properties of the solution, relating it with that of a Dirac

monopole. Finally, in section 5 we summarize and discuss our results.

2. The instanton solution

We here briefly review the extension of Witten’s multi-instanton solution to noncommuta-

tive space, as presented in ref. [36].

The clue in Witten’s ansatz [27] is to reduce the four dimensional problem to a two

dimensional one through an axially symmetric multi-instanton ansatz. That is, one passes

from 4 dimensional euclidean space-time with coordinates (r, ϑ, ϕ, t) to 2 dimensional

curved space-time with coordinates (r, t).

The noncommutative solution in [36] corresponds to a space-time with commutation

relations given by

[r, t] = iθ(r, t)

[r, ϑ] = [r, ϕ] = [t, ϑ] = [t, ϕ] = [ϑ, ϕ] = 0 . (2.1)

Eq. (2.1) corresponds to the most natural commutation relations to impose when

a problem with cylindrical symmetry is to be studied. In principle, θ(r, t) in (2.1) is

an arbitrary function. However, noncommutativity in curved space-time imposes severe

restrictions on the function θ(r, t). In general, given a two-dimensional space-time with

coordinates xi, i = 1, 2 and commutation relations of the general form

[xi, xj ] = iθij(x) , (2.2)

the associativity of the product is not guaranteed for an arbitrary function θ ij(x). One can

see however that associativity can be achieved whenever

∇kθ
ij = 0 . (2.3)

– 2 –
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The unique solution of these equations for d = 2 is given by

θij = θ0
εij√
g

(2.4)

with θ0 being a constant.

The two-dimensional curved space-time metric in which the original 4-dimensional

Yang-Mills action reduces to an abelian Higgs action turns out to be

gij = r2δij . (2.5)

Of course to exploit this connection one necessarily has to interpret r as a dimensionless

variable. This can be achieved by starting from dimensionless variables in euclidean four

dimensional space (through the introduction of a length scale R which can be related

with the instanton size). Alternatively one can introduce a dimensionful noncommutative

parameter θ = R2θ0 .

Then, using solution (2.4), we see that the commutation relations (2.1) to impose

should take the form

[r, t] = ir2θ0 ; all other [., .] = 0 (2.6)

with r and t dimensionless variables in the two-dimensional curved space. The connec-

tion with dimensionful variables r ′ and t′ goes as follows. The two-dimensional curved

metric (2.5) should be written in the form

gij =
r′2

R2
δij (2.7)

so that the commutation rule (2.6) becomes

[r′, t′] = ir′
2
θ0 . (2.8)

One can easily show that this commutation rule coincides with that studied in [28]. From

here on we shall work with dimensionless variables and recover the scale at the end of the

calculations.

A simplification occurs after the observation that

r ∗ t− t ∗ r = ir2θ0 ⇒ t ∗ 1

r
− 1

r
∗ t = iθ0 . (2.9)

Then, introducing y1 = −1/r and y2 = t eq. (2.6) becomes a usual two-dimensional Moyal

product,

[y1, y2] = iθ0 . (2.10)

Axially symmetric multi-instanton solutions to the selfduality equations

Fµν = ±F̃µν (2.11)

– 3 –
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were found in [36] by making a noncommutative extension (with U(2) gauge group) of the

cylindrically symmetric ansatz considered by Witten [27]. For the SU(2) sector one just

proposes the same ansatz as in ordinary space,

~A1 = A1(y
1, y2)~Ω(ϑ, ϕ)

~A2 = A2(y
1, y2)~Ω(ϑ, ϕ) (2.12)

~Aϑ = φ1(y1, y2)∂ϑ~Ω(ϑ, ϕ) +
(

1 + φ2(y1, y2)
)

~Ω(ϑ, ϕ) ∧ ∂ϑ~Ω(ϑ, ϕ)
~Aϕ = φ1(y1, y2)∂ϕ~Ω(ϑ, ϕ) +

(

1 + φ2(y1, y2)
)

~Ω(ϑ, ϕ) ∧ ∂ϕ~Ω(ϑ, ϕ) (2.13)

with

~Ω(ϑ, ϕ) =





sinϑ cosϕ

sinϑ sinϕ

cosϑ



 . (2.14)

Concerning the remaining U(1) components, it is natural to propose the ansatz

A4
1 = A4

1(y
1, y2)

A4
2 = A4

2(y
1, y2)

A4
ϑ=A

4
ϕ = 0 . (2.15)

With this ansatz, the selfduality equations (2.11) become

∂2A1−∂1A2+
i

2

[

A2, A
4
1

]

+
i

2

[

A4
2, A1

]

= 1−
(

φ1
)2 −

(

φ2
)2

∂2A
4
1−∂1A4

2+
i

2

[

A4
2, A

4
1

]

+
i

2
[A2, A1] = −i

[

φ1, φ2
]

∂2φ
1 +

1

2

[

A2, φ
2
]

+
+
i

2

[

A4
2, φ

1
]

=
(

y1
)2
(

∂1φ
2− 1

2

[

A1, φ
1
]

+
+
i

2

[

A4
1, φ

2
]

)

∂2φ
2 − 1

2

[

A2, φ
1
]

+
+
i

2

[

A4
2, φ

2
]

= −
(

y1
)2
(

∂1φ
1 +

1

2

[

A1, φ
2
]

+
+
i

2

[

A4
1, φ

1
]

)

.(2.16)

Imposing the further restriction in the U(1) sector,

A4
t (u, t) = At(u, t)

A4
u(u, t) = Au(u, t) (2.17)

and introducing the notation

φ = φ1 − iφ2

Dφ = ∂φ+ iAφ

F12 = ∂1A2 − ∂2A1 + i [A1, A2] (2.18)

the system (2.16) reduces to

F12 =
1

2
[φ, φ̄] (2.19)

F12 =
1

2
[φ, φ̄]+ − 1 (2.20)

D2φ = i
(

y1
)2
D1φ . (2.21)

– 4 –
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Although this system is overconstrained, nontrivial solutions were obtained in [36] within

the Fock space framework. In this approach, the noncommutative coordinates algebra

defined by (2.10) is viewed as an algebra of annihilation and creation operators,

a =
1√
2θ0

(

y1 + iy2
)

, a† =
1√
2θ0

(

y1 − iy2
)

[

a, a†
]

= 1 . (2.22)

Given a field χ, one associates an operator Oχ acting on Fock space as

Oχ(a, a
†) =

1

4π2θ0

∫

d2kχ̃(k, k̄) exp
(

−i
(

k̄a+ ka†
))

. (2.23)

The star product of fields in configuration space becomes just the operator product in Fock

space.

OηOχ = Oη∗χ . (2.24)

Here the Moyal ∗-product of two functions η and χ is defined as

η(x) ∗ χ(x) = exp

(

i

2
θij∂xi ∂

y
j

)

η(x)χ(y)

∣

∣

∣

∣

y=x

. (2.25)

Derivatives in configuration space should be replaced by commutators in Fock space,

∂z → − 1√
θ0

[a†, ] , ∂z̄ →
1√
θ0

[a, ] , (2.26)

where we have written

z =
1√
2

(

y1 + iy2
)

. (2.27)

Now, compatibility of equations (2.19) and (2.20) implies

φ̄φ = 1 , φφ̄ = 1 + 2F12 (2.28)

and hence a nontrivial solution exists in the form of a shift operator,

φ =
∑

n=0

|n+ q〉〈n| . (2.29)

Here {|n〉} is the Fock space basis of eigenfunctions of the number operator N = a†a and

the integer q ≥ 0 is related to the topological charge. Now, consistency of this last equation

with eq. (2.21) completely fixes Az,

Az = − i√
θ0

q−1
∑

n=0

(√
n+ 1

)

|n+ 1〉〈n| +

+
i√
θ0

∑

n=q

(

√

n+ 1− q −
√
n+ 1

)

|n+ 1〉〈n| (2.30)

provided that

θ0 = 2 . (2.31)

– 5 –
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In particular, both the l.h.s. and r.h.s. of eq. (2.21) vanish separately. Regarding the

particular value of θ0 for which the solution was found, let us recall that also for vortices

in flat space it was necessary to fix θ0 (but in that case to the value θ0 = 1), in order to

satisfy the corresponding Bogomol’nyi equations.

The magnetic field B = iFzz̄ associated with solution (2.30) takes the form,

B = −1

2
(|0〉〈0| + · · ·+ |q − 1〉〈q − 1|) (2.32)

with associated magnetic flux

Φ = 2πTrB = −πq . (2.33)

A factor πθ0 was included in the definition of the magnetic flux, one half of the usual factor

since one is working in the half plane.

Each projector |n〉〈n| in Fock space can be related to a Laguerre polynomial in config-

uration space through the connection

|n〉〈n| → 2(−1)n exp
(

−(y1)2 + (y2)2

2

)

Ln
(

(y1)2 + (y2)2
)

. (2.34)

Then, since the Laguerre polynomial Ln is concentrated in an annulus of radius Rn, growing

with n according to Rn ∼
√
n, one can view the magnetic flux (2.32) as that of a superpo-

sition of q annular vortices of unit flux. This should be compared with the multi-instanton

solution in ordinary space, for which the corresponding q-vortex is a superposition of q

1-vortices centered at arbitrary points along the time axis.

We can now easily write the selfdual multi-instanton solution in 4-dimensional space

by inserting the solution (2.29) and (2.30) into the ansatz (2.13). The resulting selfdual

field strength reads

~F21 = B~Ω (2.35)

~Fϑϕ = B sinϑ ~Ω (2.36)

F 4
21 = B (2.37)

F 4
ϑϕ = B sinϑ (2.38)

with the other field-strength components vanishing. The instanton number is given by

Q =
1

32π2
tr

∫

d4xεµναβFµνFαβ =
1

π

∫ 0

−∞

dy1
∫ ∞

−∞

dy2B2 = 2TrB2 =
q

2
. (2.39)

3. Gauge choices

As stated in the introduction, Manton [35] developed a procedure (that implies taking the

limit of infinite topological charge) that effectively reduces the 4 dimensional cylindrically

symmetric multi-instanton configuration in ordinary space to a static monopole solution

of the Bogomol’nyi-Prasad-Sommerfield equations. In order to extend this procedure to

the noncommutative case, we shall need to consider the instanton configuration described

in the precedent section in an appropriate gauge ensuring that, after taking the q → ∞

– 6 –
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limit, one ends, after an appropriate time-dependent gauge transformation, with a static

configuration so that the remaining spatial dependence will be consistent with static BPS

equations of a Yang-Mills-Higgs system.

Now, as we shall see, after taking the q → ∞ limit of the noncommutative instanton

described above, the gauge field configuration, as it happens in the commutative case,

remains time dependent. This is due to the fact that the 2-dimensional vortex solution

from which it was constructed, originally in the Lorentz gauge, becomes, in the infinite

charge limit, a linear function with one of its components depending on t. In ordinary

space, such a linear dependence on time can be easily eliminated by an appropriate gauge

transformation but the procedure becomes delicate in the noncommutative case. We shall

then discuss this point (at the level of the vortex solution), before proceeding to the analysis

of the resulting BPS equations.

Let us consider a U∗(1) linear gauge potential in d = 2 dimensions, in the Lorentz

gauge,

Ai =
B
2
εijx

j , i, j = 1, 2 , (3.1)

where the commutation relations for coordinates are

[x1, x2] = iθ0 . (3.2)

The field strength takes the form

F12 = ∂1A2 − ∂2A1 + i (A1 ∗ A2 −A2 ∗ A1)

= −B − B
2θ0
4

. (3.3)

The first term in the second line of (3.3) is just the field strength that would arise in the

commutative case, while the second is due to the fact we are dealing with the noncommu-

tative U(1) gauge group, which we denote by U∗(1). With our conventions, the covariant

derivative in the adjoint reads

Di = ∂i + i[Ai, ] . (3.4)

Considering a gauge transformation under which gauge fields change as

A′i = g−1 ∗ Ai ∗ g − ig−1 ∗ ∂ig (3.5)

F ′ij = g−1 ∗ Fij ∗ g (3.6)

then, eq. (3.5) can be written in the form

A′i = Ai + g−1 ∗ [Ai, g] − ig−1 ∗ ∂ig . (3.7)

Now, in view of the explicit form of the gauge field configuration (3.1) one has

[Ai, g] = −i
Bθ0
2
∂ig (3.8)

so that, finally, eq. (3.7) becomes

A′i = Ai − iαg−1∂ig , (3.9)

– 7 –
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where

α = 1 +
Bθ0
2

. (3.10)

We then see that, if one only allows for regular gauge transformations, the gauge orbit to

which Ai belongs consists, for Bθ0 = −2, of just one point. But it is precisely the value to

which our multi-vortex solution tends in the q → ∞ limit. As we shall show by allowing

gauge transformations singular at Bθ0 = −2, one is able to gauge away the A1 component

of the configuration (3.1).

In the commutative case, one easily finds that the transformation corresponds to the

gauge group element

gc = exp

(

−iB
2
x1x2

)

. (3.11)

We then propose the following ansatz for the gauge transformation in the noncommutative

case,

gnc = A exp
(

−iβx1x2
)

, (3.12)

where

β =
B

1 + α
(3.13)

and A is an arbitrary parameter to be appropriately adjusted. Note that the exponential

in (3.12) is defined with the ordinary product in its series expansion

gnc = A

(

1− i
(

βx1x2
)

− 1

2!

(

βx1x2
) (

βx1x2
)

+ · · ·
)

. (3.14)

Because of this fact, it is not a priory guaranteed that gnc is a unitary element of the

noncommutative gauge group U∗(1). We shall see however that one can chose A so that

gnc ∈ U∗(1). To see this, it will be convenient to use the Weyl-Moyal connection (2.23),

ĝnc(x̂1, x̂2) =

∫

d2p

(2π)2
g̃nc(p) e

i(p1x̂1+p2x̂2) , (3.15)

where x̂1 and x̂2 are operators satisfying the noncommutative algebra,

[x̂1, x̂2] = iθ . (3.16)

In this framework, the product of operators can be written in Fourier space as

f̂(x̂1, x̂2) · ĥ(x̂1, x̂2)→
∫

d2q

(2π)2
f̃(p− q)h̃(q) exp(i(p1q2 − p2q1)θ0) . (3.17)

For the ansatz (3.12) one has

g̃nc(p1, p2) =
2πA

β
exp

(

i
p1p2
β

)

. (3.18)

Then, after some straightforward calculation, one finds

ĝnc(x̂1, x̂2) · ĝnc(x̂1, x̂2)† =
|A|2

1− (θ0β/2)2
.

– 8 –
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Finally, with an appropriate choice for A one can write the unitary gauge transformation

gnc ∈ U∗(1) in the form

gnc =

√

1 + Bθ0/2
1 +Bθ0/4

exp

(

−i B
2(1 + Bθ0/4)

x1x2

)

. (3.19)

Under this gauge transformation, which as expected is singular at θ0B = −2, one manages

to gauge out the A1 component in (3.1),

A′1 = g−1nc ∗ A1 ∗ gnc − ig−1nc ∗ ∂ignc = 0 . (3.20)

Let us now uplift this transformation to the full gauge group U∗(2), in order to eliminate

an A1 linear component in the original 4 dimensional ansatz (2.13) and (2.15). We propose

the following gauge group transformation

gU(2) = exp∗
(

−ic[y1, y2]+Λ
)

(3.21)

with [y1, y2]+ the Moyal anticommutator of y1 and y2 and

c =
1

2θ0
log

(

1 +
Bθ0
2

)

(3.22)

Λ =
1

2
(Ωaσa + I) . (3.23)

The notation exp∗ means that this exponential is defined using the Moyal product in its

series expansion.

One can easily see that

g†U(2) = g−1U(2) = 1 + Λ
(

g†nc − 1
)

. (3.24)

The U∗(2) gauge transformation for the i = 1, 2 components of the Ai transform accord-

ing to

A′i = g−1U(2) ∗ Ai ∗ gU(2) + ig−1U(2) ∗ ∂igU(2)

= Λ
(

g−1nc ∗ Ai ∗ gnc + ig−1nc ∗ ∂ignc
)

, i = 1, 2 (3.25)

so, in view of (3.20), one can gauge out the linear time dependent component A1 of the

gauge field configuration leading to the field strength (2.38).

4. Monopoles from instantons

Let us now consider the limit of infinite topological charge in order to construct static,

spherically symmetric BPS solutions from axially symmetric ones. First, taking the q →∞
limit in eq. (2.32) one gets a constant magnetic field,

lim
q→∞

B = −1

2

∞
∑

n=0

|n〉〈n| = −1

2
. (4.1)
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Such a magnetic field follows from the gauge field configuration (see eq. (2.30))

lim
q→∞

Az = −
i√
2

∞
∑

n=0

(√
n+ 1

)

|n+ 1〉〈n| = − i√
2

∞
∑

n=0

a†|n〉〈n| = − i
2
z̄ . (4.2)

Recalling that Az = (1/
√
2)(A1 − iA2) we have

lim
q→∞

A1 = −y
2

2
, lim

q→∞
A2 =

y1

2
. (4.3)

In order to convert the instanton selfduality equations (2.11) into static BPS equations

for a Yang-Mills-Higgs system, one first needs to identify the time component A2 of the

gauge field with a Higgs scalar Φ taking values in the Lie algebra of U∗(2). The spatial

components (A1, Aϑ, Aϕ) will be identified with the spatial components of a Yang-Mills field

that we shall denote Bi. That is, taking B0 = 0 one establishes the following connection

A2 → Φ

(Ar, Aϑ, Aϕ) → (Br, Bϑ, Bϕ)

Fij → Gij = ∂iBj − ∂jBi + i[Bi, Bj ] . (4.4)

Now, in order to obtain a noncommutative U∗(2) monopole like static solution (Bi,Φ) from

the instanton solution Aµ as defined in (2.12) and (2.13) one needs a time-independent field

configuration. While the q →∞ limit does lead to a static configuration for the Higgs field

Φ, this is not the case for the gauge field components. The A1 component exhibits a linear

dependence on y2 = t, as given by eq. (4.3), which could be gauged away, but subject to a

proviso related to the discussion in section 3. Indeed, we have seen that a two-dimensional

configuration of the type (3.1), with B = −1 (or Bθ0 = −2) exhibits a gauge orbit consisting
of just one point and the same happens for our 4-dimensional U∗(2) configuration. Then,

to gauge away the y2 (time) dependence of A1 we are forced to consider singular gauge

transformations of the kind discussed in section 3. Indeed, under a gauge transformation

of the form (3.21)

gU(2) = exp∗
(

−ic[y1, y2]+Λ
)

(4.5)

A1 vanishes while A2 becomes

A2 = −B
(

1 +
Bθ0
4

)

x1Λ =
1

2
x1Λ . (4.6)

Then, the U∗(2) Higgs scalar Φ = A2 is just

Φ =
1

2
x1Λ = − 1

2r
Λ . (4.7)

Finding the actual gauge transformation that eliminates the time dependence from the

angular components is far more complicated. However, we know that the in the q → ∞
limit the only non-trivial strength components of the gauge field, as given by eqs. (2.35)–

(2.38) take the very simple form

~F0r =
B

r2
~Ω , ~Fϑϕ = B sinϑ ~Ω

F 4
0r =

B

r2
, F 4

ϑϕ = B sinϑ (4.8)
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with B = −1/2. One can then easily find a time-independent instanton configuration

leading to such a field strength. It is simply given by

~A′0 =
B

r
~Ω , ~A′r = 0 , ~A′ϑ = −~Ω ∧ ∂ϑ~Ω ,

~A′ϕ = −~Ω ∧ ∂ϕ~Ω− (B + 1)(1 + cosϑ)~Ω

A′
4
0 =

B

r
, A′

4
r = 0 , A′

4
ϑ = 0 , A′

4
ϕ = −B(1 + cosϑ) . (4.9)

Since for nonabelian gauge theories the field strength does not determine the gauge poten-

tial up to gauge transformations, as was shown by Wu and Yang in his classic article [31],

is not obvious that the fields A′µ in (4.9) are gauge equivalent to the original instanton con-

figuration Aµ. However we will show that this is in fact the case, the gauge configurations

A′µ and Aµ are related by a gauge transformation.

To see this we notice that both gauge configurations generate the same field strength

and satisfy the same equations of motion. Concerning the Bianchi identities, they are both

satisfied everywhere except at the origin where they both have the same delta function

singularity (see the discussion below). Most of the components of Fµν vanishes, so that

from the equation of motion we deduce the following identities

D0F0r = 0 , DrF0r = −2

r
F0r

DϑFϑϕ = 0 , DϕFϑϕ = 0 (4.10)

and from the Bianchi identities

DϑF0r = 0 , DϕF0r = 0

D0Fϑϕ = 0 , DrFϑϕ = 2πδ(3)Λ . (4.11)

Then we see that all the covariant derivatives of Fµν vanishes, except for DrF0r = −2
r
F0r

and for that in (4.11) having a delta function singularity. And since Ar = A′r = 0, we

conclude that all higher covariant derivatives of the field strength coincide for both config-

urations. This is precisely the condition ensuring that there exist a gauge transformation

connecting Aµ and A′µ [32]–[33]. So that we conclude that (4.9) is gauge-equivalent to the

original gauge field configuration one gets in the q →∞ limit.

Then, we can write the resulting BPS equation for the U∗(2) Yang-Mills-Higgs system

and its monopole solution in the form

1

2
εijkGjk = DiΦ (4.12)

~Φ = − 1

2r
~Ω , ~Br = 0 , ~Bϑ = −~Ω ∧ ∂ϑ~Ω , (4.13)

~Bϕ = −~Ω ∧ ∂ϕ~Ω+
1

2
(1 + cosϑ)~Ω (4.14)

Φ4 = − 1

2r
, B4

r = 0 , B4
ϑ = 0 , B4

ϕ = −1

2
(1 + cosϑ) . (4.15)

With this time-independent configuration we can make the correspondence (4.4) and

obtain a BPS monopole. Note that both the SU(2) and U(1) components of Bϕ have a

contribution 1/2(1+cos ϑ) which coincide with the Wu-Yang and Dirac singular monopole
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configuration. In order to compute the corresponding magnetic charge, we define, as usual,

an “electromagnetic” field strength Gij by projecting the U∗(2) field strength along the Φ

direction,

Gij = tr

(

Φ

|Φ|Gij

)

(4.16)

which leads to a magnetic field of the form

Br = − 1

r2
(4.17)

corresponding to a unit charge magnetic monopole

Qm =
1

4π
Φm = −1 (4.18)

with Φm the magnetic flux associated to (4.17). The corresponding electric field, consis-

tently defined as

Gi0 = tr

(

Φ

|Φ|Gi0

)

(4.19)

of course vanishes. So, we have arrived to a magnetic monopole-like solution of first order

(BPS) equations

DiΦ =
1

2
εijkGjk (4.20)

which are those giving the extrema for the energy of a gauge field-Higgs system. Then,

apart from the fact that there is a Dirac-Wu-Yang singularity, the configuration solves the

second order Yang-Mills-Higgs equations of motion,

DiG
ij = [Φ, DjΦ]

DiD
iΦ = 0 . (4.21)

Of course, the energy associated to the solution (4.15),

E = Tr

∫

d3x

(

DiΦDiΦ+
1

2
FijFij

)

(4.22)

is strictly infinite (as it coincides with the selfenergy of a Dirac monopole)

E = π

∫

dr
1

r2
=

∫

d3xB2
mon . (4.23)

Now, if we introduce a regulator ε1 to cut off the short-distances divergence and recover

the dimensional scale R (θ = θ0R
2 = 2R2) we can write E in the form

E =
π

g2YMRε
=

πR

g2YMR
2ε

=
2π

g2YMθ

R

ε
. (4.24)

1Regulator ε is dimensionless since r is a dimensionless variable.

– 12 –



J
H
E
P
0
7
(
2
0
0
4
)
0
3
7

(We have reintroduced the gauge coupling constant gYM which was taken equal to 1 along

the paper). Defining a length L = R/ε we see that E can be identified with the mass of a

string of length L whose tension is

T =
2π

g2YMθ
. (4.25)

One can see (4.22) as emerging in the decoupling linearized limit of a D3-brane in the Type

IIB string theory with the Higgs field describing its fluctuations in a transverse direction.2

Since the B-field leading to our noncommutative setting is transverse to the D3-brane

surface, one can make an analysis similar to that presented by Callan-Maldacena in [34]

with the scalar field describing a perpendicular spike. In this last investigation, where

the electric case is discussed, the string interpretation corresponds to an F -string attached

to a D3-brane. Our magnetic case can be related to this by an S-duality transformation

changing the F1 into a D1 string. Comparing the tension of such a D1-string with the one

resulting from our solution (eq. (4.25)),

TD1 =
1

2πα′gs
=

2π

g2YMθ
(4.26)

and using 2πgs = g2YM we see that quantization of the magnetic monopole charge leads

to a quantized value for θ in string length units equal to 1 for our charge-1 monopole,

θ/2πα′ = 1.

5. Discussion

We shall summarize here our results and discuss the properties of the noncommutative

monopole solution we have found as compared with previous constructions.

Previous investigations on noncommutative monopoles [22]–[24] were based in Nahm’s

construction in ordinary space [29]. These works start from the ADHM version of the

noncommutative multi-instanton and for the U∗(1) gauge group, lead to a BPS solution

which has zero magnetic charge.

The alternative route we have taken, parallels in noncommutative space, the obser-

vation of refs. [35], by taking the infinite charge limit of an axially symmetric (in time)

instanton. The resulting configuration solves the BPS equations for a Yang-Mills-Higgs

system with the original A0 gauge field component playing the role of the scalar field.

In both approaches -that of ref. [22]–[24] and ours- one needs to start from a multi-

instanton configuration in noncommutative 4-dimensional space. If one follows the Nahm

approach, one needs a noncommutative version of the ADHM solution and this was pre-

sented in [3]. The noncommutative solution corresponds to a self-dual θµν which means

that the noncommutative relations are reduced to the nontrivial pair [x1, x2] = [x3, x4] =

iθ. In contrast, the axially symmetric instanton solution corresponds to a noncommuta-

tive relation of the form [r, t] = iθ(r, t) [36] (Covariance arguments force the condition

θ(r, t) = r2θ0).

2We thank the referee for clarifying to us the correct brane interpretation of the solution.
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When the 4-dimensional original problem is reduced to three dimensions, these different

commutation relations lead, of course, to different noncommutative spaces. In particular,

one could think that in our construction, for which noncommutativity necessarily involves

time, static configurations could just be considered as ordinary commutative ones. However

this configuration has a genuine noncommutative origin as a descendent of the noncommu-

tative instanton (2.35)–(2.38). Moreover since solitons are intended to play a role through

nonperturbative effects where all space-time variables come into play, their noncommuta-

tive character manifests, as it happens for example when one computes tension (4.25) from

the string-monopole mass formula.

It is worthwhile to emphasize how well Manton’s method works for the noncommutative

instanton (2.35)–(2.38) leading, as in ordinary space, to a time-independent configuration

satisfying the BPS equations. And also how different are the final products: a ’t Hooft-

Polyakov monopole in ordinary space and a Wu-Yang monopole in the present case.

An application to brane dynamics of noncommutative monopoles was given in [24] for

the case a static BPS U∗(1) solution obtained from an ADHM instanton. Now, the soliton

obtained from the ADHM noncommutative instanton has zero magnetic charge, a result

that can be understood in terms of a system of a magnetic monopole attached to a flux

tube of opposite charge, transverse to the noncommutative plane. In contrast, we have

shown that the charge of the solution we obtained is effectively 1. Studying the second

order equations of motion associated to our BPS solution, we have seen that our soliton

corresponds to a Wu-Yang singular configuration: although it verifies exactly the BPS

first order equations, delta-function sources are needed in the second order Euler-Lagrange

equations.

Let us finally point a direction along which it would be worthwhile to pursue our in-

vestigation. As already mentioned, the reduction from selfdual to BPS equations could be

performed with the isometry kµ not necessarily in the euclidean time direction. In par-

ticular, a different choice for kµ leads in ordinary space to monopoles on H3, hyperbolic

3-spaces, as defined in [30]. Instead of the noncommutative axially symmetric (with axis

in time) instantons we started from, one should consider axially symmetric invariant non-

commutative instantons but in this case with “axis” in R2 ∼ S1 ⊂ R4. The properties of

the resulting monopoles in the corresponding noncommutative space will change drastically

and can exhibit interesting features. We hope to come back to this problem in the future.
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