125 research outputs found
Steps and terraces at quasicrystal surfaces. Application of the 6d-polyhedral model to the analysis of STM images of i-AlPdMn
6-d polyhedral models give a periodic description of aperiodic quasicrystals.
There are powerful tools to describe their structural surface properties. Basis
of the model for icosahedral quasicrystals are given. This description is
further used to interpret high resolution STM images of the surface of i-AlPdMn
which surface preparation was followed by He diffraction. It is found that both
terrace structure and step-terrace height profiles in STM images can be
consistently interpreted by the described model
Coincidence isometries of a shifted square lattice
We consider the coincidence problem for the square lattice that is translated
by an arbitrary vector. General results are obtained about the set of
coincidence isometries and the coincidence site lattices of a shifted square
lattice by identifying the square lattice with the ring of Gaussian integers.
To illustrate them, we calculate the set of coincidence isometries, as well as
generating functions for the number of coincidence site lattices and
coincidence isometries, for specific examples.Comment: 10 pages, 1 figure; paper presented at Aperiodic 2009 (Liverpool
Icosahedral multi-component model sets
A quasiperiodic packing Q of interpenetrating copies of C, most of them only
partially occupied, can be defined in terms of the strip projection method for
any icosahedral cluster C. We show that in the case when the coordinates of the
vectors of C belong to the quadratic field Q[\sqrt{5}] the dimension of the
superspace can be reduced, namely, Q can be re-defined as a multi-component
model set by using a 6-dimensional superspace.Comment: 7 pages, LaTeX2e in IOP styl
A molecular overlayer with the Fibonacci square grid structure
Quasicrystals differ from conventional crystals and amorphous materials in that they possess long-range order without periodicity. They exhibit orders of rotational symmetry which are forbidden in periodic crystals, such as five-, ten-, and twelve-fold, and their structures can be described with complex aperiodic tilings such as Penrose tilings and Stampfli-Gaehler tilings. Previous theoretical work explored the structure and properties of a hypothetical four-fold symmetric quasicrystal-the so-called Fibonacci square grid. Here, we show an experimental realisation of the Fibonacci square grid structure in a molecular overlayer. Scanning tunnelling microscopy reveals that fullerenes (C ) deposited on the two-fold surface of an icosahedral Al-Pd-Mn quasicrystal selectively adsorb atop Mn atoms, forming a Fibonacci square grid. The site-specific adsorption behaviour offers the potential to generate relatively simple quasicrystalline overlayer structures with tunable physical properties and demonstrates the use of molecules as a surface chemical probe to identify atomic species on similar metallic alloy surfaces
DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma
The pathogenesis of cystic nephroma of the kidney has interested pathologists for over 50 years. Emerging from its initial designation as a type of unilateral multilocular cyst, cystic nephroma has been considered as either a developmental abnormality or a neoplasm or both. Many have viewed cystic nephroma as the benign end of the pathologic spectrum with cystic partially differentiated nephroblastoma and Wilms tumor, whereas others have considered it a mixed epithelial and stromal tumor. We hypothesize that cystic nephroma, like the pleuropulmonary blastoma in the lung, represents a spectrum of abnormal renal organogenesis with risk for malignant transformation. Here we studied DICER1 mutations in a cohort of 20 cystic nephromas and 6 cystic partially differentiated nephroblastomas, selected independently of a familial association with pleuropulmonary blastoma and describe four cases of sarcoma arising in cystic nephroma, which have a similarity to the solid areas of type II or III pleuropulmonary blastoma. The genetic analyses presented here confirm that DICER1 mutations are the major genetic event in the development of cystic nephroma. Further, cystic nephroma and pleuropulmonary blastoma have similar DICER1 loss of function and βhotspot' missense mutation rates, which involve specific amino acids in the RNase IIIb domain. We propose an alternative pathway with the genetic pathogenesis of cystic nephroma and DICER1-renal sarcoma paralleling that of type I to type II/III malignant progression of pleuropulmonary blastoma
Structure of the icosahedral Ti-Zr-Ni quasicrystal
The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined
by invoking similarities to periodic crystalline phases, diffraction data and
the results from ab initio calculations. The structure is modeled by
decorations of the canonical cell tiling geometry. The initial decoration model
is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1
approximant structure of the quasicrystal. The decoration model is optimized
using a new method of structural analysis combining a least-squares refinement
of diffraction data with results from ab initio calculations. The resulting
structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration
rule and structural details are discussed.Comment: 12 pages, 8 figure
Highly Precise and Developmentally Programmed Genome Assembly in Paramecium Requires Ligase IVβDependent End Joining
During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5β² overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAiβmediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5β²-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3β² ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a βcut-and-closeβ mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics
Cdh11 Acts as a Tumor Suppressor in a Murine Retinoblastoma Model by Facilitating Tumor Cell Death
CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (pβ=β0.01). Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8) (pβ=β0.01) and had fewer multifocal tumors at PND28 (pβ=β0.016), compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (pβ=β0.003). In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers), while proliferation in vivo remained unaffected (pβ=β0.121). Activated caspase-3 was significantly decreased and Ξ²-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death
Characterization of a Human Cell Line Stably Over-Expressing the Candidate Oncogene, Dual Specificity Phosphatase 12
Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s) within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6) and the dual specificity phosphatase 12 (dusp12). While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1) which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted
- β¦