204 research outputs found

    G.I.S. technologies for data collection, management and visualization of large slope instabilities: two applications in the Western Italian Alps

    No full text
    International audienceLarge slope instabilities are gravitational phenomena whose main characteristics are the multi-km2 area extension and the complex geometrical, geomorphological and geomechanical settings. Several studies outlined their importance in spatial and temporal occurrence of natural hazards on wide mountain areas and their possible interaction in human activities. For the study of large slope instability and deep seated slope gravitational deformations in the Susa and Aosta Valleys (Western Italian Alps) a complete multiscale program (spatial and temporal) analysis has been performed, giving contributions to the reconstruction and settings of their possible evolution. A complex geodatabase has been created, including thematic elements from field-data collection (geomorphology, hydrology, lithology, structural geology) and instability events analysis from data archives and remote sensing images. To facilitate the management of a large amount of collected data a G.I.S. (Geographical Information System) has been developed, including two main levels of information: local and regional. Local information is mainly devoted to detailed geothematic mapping of single instability phenomena. Clot Brun case study is presented, where original and derived landslide features have been elaborated through arithmetical and statistical operations, in order to identify different instability zones and to assess displacements and state of activity through-time. Regional information collected for a landslide inventory of Aosta Valley (IFFI project) summarizes historical and remote sensing data, combined with metadata from local analysis, in order to assess spatial and temporal hazards. To avoid problems of data accuracy (quality and positioning) due to different source archives, a semi-automatic system for selection and validation of data has been created, based on their spatial characteristics (buffer analysis and control). G.I.S. technologies have been used to archive, manage and visualize collected data through 2-D and 3-D models of single case studies and regional distribution of large slope instabilities

    Reliability and uncertainties of the analysis of an unstable rock slope performed on RPAS digital outcrop models: The case of the gallivaggio landslide (Western Alps, Italy)

    Get PDF
    A stability investigation based on Digital Outcrop Models (DOMs) acquired in emergency conditions by photogrammetric surveys based on Remote Piloted Aerial System (RPAS) was conducted on an unstable rock slope near Gallivaggio (Western Alps, Italy). The predicted mechanism of failure and volume of the unstable portion of the slope were successively verified on the DOMs acquired after the rockfall that effectively collapsed the May 29th, 2018. The comparison of the pre-and post-landslide 3D models shows that the estimated mode of failure was substantially correct. At the same time, the predicted volume of rock involved in the landslide was overestimated by around 10%. To verify if this error was due to the limited accuracy of the models georeferenced in emergency considering only the Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU)-information of RPAS, several Ground Control Points (GCPs) were acquired after the failure. The analyses indicate that the instrumental error in the volume calculation due to the direct-georeferencing method is only of the 1.7%. In contrast, the significant part is due to the geological uncertainty in the reconstruction of the real irregular geometry of the invisible part of the failure surface. The results, however, confirm the satisfying relative accuracy of the direct-georeferenced DOMs, compatible with most geological and geoengineering purposes

    Time response of a landslide to meteorological events

    Get PDF
    International audienceA landslide affecting two small villages located on the Northwestern Italian Apennines has been investigated since the year 2000 through the use of different equipment. A complex monitoring system has been installed in the area. The system includes several inclinometers, piezometers and a raingauge. An Automatic Inclinometric System (AIS) has been also installed that automatically performs measurements, twice a day, along the entire length of a pipe that is 45 m deep. This monitoring system has been set up to identify a methodology that allowed to deal with landslides, trying to predict their behaviour beforehand for warning purposes. Previous researches carried out in the same area for a period of about 7 months, in the year 2000, have allowed to identify a correlation between deep slope movements and rainfalls. In particular, it has been possible to determine the time lag needed for a rainfall peak to produce a corresponding peak of the landslide movements; this time lag was of 9 days. This result was possible because the AIS allows to obtain, as mentioned, daily inclinometric measurements that can be correlated with the recorded rainfalls. In the present report we have extended the analysis of the correlation between deep slope movements and rainfalls to a greater period of observation (2 years) to verify over this period the consistency of the time lag mentioned above. The time lag previously found has been confirmed. We have also examined the possibility to extend to the entire landslide body the correlation that has been found locally, analyzing the results of the remaining inclinometric tubes with traditional reading installed on the landslide and comparing them with the results of the AIS. The output of the tubes equipped with piezometric cells has also been analyzed. The relations existing among rainfalls, ground water level oscillations and the related slope movements have been explore

    A formação do conceito científico mediado pela produção escrita de gênero escolar-científico no currículo de química

    Get PDF
    Este artigo propõe uma discussão sobre fundamentos da teoria da cognição na formação do conceito científico proposta por Vigotski e sua relação com aspectos da metalingüística proposta por Bakhtin, quando discute as esferas da atividade humana,as noções de enunciado e seus aspectos intimamente ligados, o conteúdo temático, o estilo e a construção composicional, conformando os gêneros do discurso. As tipologias propostas por Schneuwly & Dolz adquirem importância relevante na construção dialógica dos gêneros do discurso escrita por estudantes e mediada por modelos padrão para introdução e aplicação no currículo formal de química no ensino médio

    Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery – Ormea rock slope, Italy

    Get PDF
    Abstract The use of a remotely piloted aircraft system (RPAS) and digital photogrammetry is valuable for the detection of discontinuities in areas where field mapping and terrestrial photogrammetry or laser scanner surveys cannot be employed because the slope is unsafe, inaccessible, or characterized by a complex geometry with areas not visible from the ground. Using the Structure-from-Motion method, the acquired images can be used to create a 3D texturized digital outcrop model (TDOM) and a detailed point cloud representing the rock outcrop. Discontinuity orientations in a complex rock outcrop in Italy were mapped in the field using a geological compass and by manual and automated techniques using a TDOM and point cloud generated from RPAS imagery. There was a good agreement between the field measurements and manual mapping in the TDOM. Semi-automated discontinuity mapping using the point cloud was performed using the DSE, qFacet FM, and qFacet KD-tree methods applied to the same 3D model. Significant discrepancies were found between the semi-automatic and manual methods. In particular, the automatic methods did not adequately detect discontinuities that are perpendicular to the slope face (bedding planes in the case study). These differences in detection of discontinuities can adversely influence the kinematic analysis of potential rock slope failure mechanisms. We use the case study to demonstrate a workflow that can accurately map discontinuities with results comparable to field measurements. The combined use of TDOM and RPAS dramatically increases the discontinuity data because RPAS can supply a good coverage of inaccessible or hidden portions of the slope and TDOM is a powerful representation of the reality that can be used to map discontinuity orientations including those that are oriented perpendicular to the slope

    Survey solutions for 3D acquisition and representation of artificial and natural caves

    Get PDF
    A three-dimensional survey of natural caves is often a difficult task due to the roughness of the investigated area and the problems of accessibility. Traditional adopted techniques allow a simplified acquisition of the topography of caves characterized by an oversimplification of the geometry. Nowadays, the advent of LiDAR and Structure from Motion applications eased three-dimensional surveys in different environments. In this paper, we present a comparison between other three-dimensional survey systems, namely a Terrestrial Laser Scanner, a SLAM-based portable instrument, and a commercial photo camera, to test their possible deployment in natural caves survey. We presented a comparative test carried out in a tunnel stretch to calibrate the instrumentation on a benchmark site. The choice of the site is motivated by its regular geometry and easy accessibility. According to the result obtained in the calibration site, we presented a methodology, based on the Structure from Motion approach that resulted in the best compromise among accuracy, feasibility, and cost-effectiveness, that could be adopted for the three-dimensional survey of complex natural caves using a sequence of images and the structure from motion algorithm. The methods consider two different approaches to obtain a low resolution complete three-dimensional model of the cave and ultra-detailed models of most peculiar cave morphological elements. The proposed system was tested in the Gazzano Cave (Piemonte region, Northwestern Italy). The obtained result is a three-dimensional model of the cave at low resolution due to the site’s extension and the remarkable amount of data. Additionally, a peculiar speleothem, i.e., a stalagmite, in the cave was surveyed at high resolution to test the proposed high-resolution approach on a single object. The benchmark and the cave trials allowed a better definition of the instrumentation choice for underground surveys regarding accuracy and feasibility

    Preface Results of the open session on "Documentation and monitoring of landslides and debris flows" for mathematical modelling and design of mitigation measures, held at the EGU General Assembly 2009

    Get PDF
    The papers that are here presented and summarised represent the recent scientific contributions of some authors coming from different countries and working in the fields of monitoring, modelling, mapping and design of mitigation measures against mass movements. The authors had the opportunity to present their recent advancements, discuss each other needs and set forth future research requirements during the 2009 EGU General Assembly, so that their scientific contributions can be considered the result of the debates and exchanges that were set among scientists and researchers, either personally or during the review phase since that date. In this resume, the scientific papers of the special issue are divided according to different thematic areas and summarised. The most innovative scientific approaches proposed in the special issue, regarding the monitoring methodologies, simulation techniques and laboratory equipment are described and summarised. The obtained results are very promising to keep on future research at a very satisfactory level

    Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine

    Get PDF
    The global availability of Sentinel-2 data and the widespread coverage of cost-free and high-resolution images nowadays give opportunities to map, at a low cost, shallow landslides triggered by extreme events (e.g. rainfall, earthquakes). Rapid and low-cost shallow landslide mapping could improve damage estimations, susceptibility models and land management. This work presents a two-phase procedure to detect and map shallow landslides. The first is a semi-automatic methodology allowing for mapping potential shallow landslides (PLs) using Sentinel-2 images. The PL aims to detect the most affected areas and to focus on them an high-resolution mapping and further investigations. We create a GIS-based and user-friendly methodology to extract PL based on pre- and post-event normalised difference vegetation index (NDVI) variation and geomorphological filtering. In the second phase, the semi-automatic inventory was compared with a benchmark landslide inventory drawn on high-resolution images. We also used Google Earth Engine scripts to extract the NDVI time series and to make a multi-temporal analysis. We apply this procedure to two study areas in NW Italy, hit in 2016 and 2019 by extreme rainfall events. The results show that the semi-automatic mapping based on Sentinel-2 allows for detecting the majority of shallow landslides larger than satellite ground pixel (100 m2). PL density and distribution match well with the benchmark. However, the false positives (30 % to 50 % of cases) are challenging to filter, especially when they correspond to riverbank erosions or cultivated land.</p

    GeomonWeb: a Web-Based Monitoring System for Landslide Phenomena

    Get PDF
    • …
    corecore