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Abstract. The global availability of Sentinel-2 data and the
widespread coverage of cost-free and high-resolution im-
ages nowadays give opportunities to map, at a low cost,
shallow landslides triggered by extreme events (e.g. rainfall,
earthquakes). Rapid and low-cost shallow landslide map-
ping could improve damage estimations, susceptibility mod-
els and land management.

This work presents a two-phase procedure to detect
and map shallow landslides. The first is a semi-automatic
methodology allowing for mapping potential shallow land-
slides (PLs) using Sentinel-2 images. The PL aims to de-
tect the most affected areas and to focus on them an high-
resolution mapping and further investigations. We create
a GIS-based and user-friendly methodology to extract PL
based on pre- and post-event normalised difference vegeta-
tion index (NDVI) variation and geomorphological filtering.
In the second phase, the semi-automatic inventory was com-
pared with a benchmark landslide inventory drawn on high-
resolution images. We also used Google Earth Engine scripts
to extract the NDVI time series and to make a multi-temporal
analysis.

We apply this procedure to two study areas in NW Italy,
hit in 2016 and 2019 by extreme rainfall events. The results
show that the semi-automatic mapping based on Sentinel-2
allows for detecting the majority of shallow landslides larger
than satellite ground pixel (100 m2). PL density and distri-
bution match well with the benchmark. However, the false
positives (30 % to 50 % of cases) are challenging to filter, es-
pecially when they correspond to riverbank erosions or culti-
vated land.

1 Introduction

One of the recent and forecasted impacts of climate change
is the rise of extreme meteorological events (IPCC, 2014).
During extreme rainfall, one of the most common phenom-
ena is the activation of shallow landslides (Gariano and
Guzzetti, 2016; Guzzetti et al., 2004) as defined by Guzzetti
et al. (2006) and Caine (1980). Shallow landslides are trig-
gered not only by rainfall but also by other extreme events
like earthquakes (Sassa et al., 1996) or rapid snow melting
(Cardinali et al., 2000). These slope instabilities usually in-
volve soils and superficial deposits and represent a meaning-
ful impact on infrastructures (e.g. road networks) and cul-
tivated areas. The pervasive distribution of these phenomena
on slopes, hereafter called extreme events, makes their identi-
fication and mapping crucial for effective damage evaluation.
For this reason, the definition of procedures and strategies
aimed at mapping shallow landslides has deeply been inves-
tigated in the last few decades to reach different final goals
like (i) the mapping of the full extent of a landslide disas-
ter (Guzzetti et al., 2004), (ii) the study of geomorphological
and erosion phenomena (Fiorucci et al., 2011), (iii) the vali-
dation of susceptibility models (Bordoni et al., 2015; Cignetti
et al., 2019; Rossi et al., 2010), and (iv) the statistical com-
parison of landslide inventories from different methodologies
and sensors (Carrara, 1993; Fiorucci et al., 2018).

Landslide event inventory maps are commonly imple-
mented using several different methodologies: (i) post-event
aerial photo analysis and plotting (Cardinali et al., 2000),
(ii) manual or automatic identification based on the use of
high-resolution digital elevation models (DEMs) obtained
from airborne lidar surveys done after the event (D’Amato
Avanzi et al., 2015; Giordan et al., 2017), and (iii) traditional
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geomorphological field surveys (Pepe et al., 2019). In recent
years, even satellite images have been used to identify and
map shallow landslides (Ghorbanzadeh et al., 2021; Lu et
al., 2019; Martha et al., 2010; Mondini et al., 2011; Qin et
al., 2018). This recent evolution has been possible thanks to
the robust improvement of satellite resolution (sub-metric for
most commercial satellites), which nowadays is not so differ-
ent from aerial images (Fiorucci et al., 2019). Recent studies
have mostly been based on commercial high-resolution satel-
lite images. The use of these commercial images often re-
quires committed acquisition planning after the event that re-
sults in a high cost and limits the use of these systems. For in-
stance, areas with a low human or infrastructure presence are
often overlooked by authorities that mainly dedicate funds to
study more inhabited sectors. The scarcity of resources cre-
ates a bias between high-income populated areas and remote
areas or developing countries that cannot afford the cost.

In the last few years, the Sentinel satellite constellation of
the Copernicus programme made medium–high-resolution
images, (about 10 m) both multi-spectral (Sentinel-2) and
SAR (Sentinel-1), available free of cost and with a high-
frequency revisit rate.

In addition, several areas of the world are covered
by multi-temporal very-high-resolution images of Google
Earth™ that could help to detect and map shallow landslides
when pre- and post-event images are available (Borrelli et al.,
2015). Google Earth Engine (GEE) cloud processing (Gore-
lick et al., 2017) could also be used to create time series of
several satellite data (optical, SAR), which are useful to de-
tect the change in and the recovery of vegetation and to map
landslides and their effect on vegetated areas (Scheip and
Wegmann, 2021; Yu et al., 2018; Handwerger et al., 2022;
Lindsay et al., 2022; Ganerød et al., 2023).

In this study, we utilised pre- and post-event normalised
difference vegetation index (NDVI) data from Sentinel-2 to
develop a dedicated methodology for semi-automatically de-
tecting potential shallow landslides. To assess the accuracy
of our approach, we compared the potential landslides de-
tected using our method with a benchmark inventory manu-
ally mapped on post-event high-resolution images.

We utilised the Google Earth Engine (GEE) platform to
generate the NDVI time series, which allowed us to pinpoint
the optimal image pairing for detecting potential landslides,
calculate multi-temporal NDVI averages and keep track of
vegetation regrowth in the impacted regions.

Our methodology aims to provide a more user-friendly
approach compared to similar studies. We achieved this by
using cost-free data, open-source software and empirical
thresholding, which makes it easier to replicate our approach
in other regions affected by shallow landslides. The imple-
mented methodology has been tested in two areas of north-
western Italy hit by extreme rainfall events in recent years,
i.e. November 2016 and October 2019. The two events trig-
gered hundreds of shallow landslides in small areas, causing

widespread damage to the road network; cultivation; and, in
some cases, urban areas.

Semi-automatic and manual inventories and GEE scripts
have also been published online and are open for improve-
ment by the scientific and user community.

2 Study areas

The two presented case studies are located in NW Italy, re-
spectively, and were affected by two heavy rainfall events in
November 2016 and October 2019.

The 2016 event area (about 350 km2) is located in the Lig-
urian Alps at the border between the Liguria and Piemonte
regions (NW Italy). The shape and the extension of the study
area (Fig. 1) are a combination of (i) the area most severely
hit by rainfall, (ii) other literature studies of the event (Cre-
monini and Tiranti, 2018; Pepe et al., 2019), and (iii) the
footprint of the available Sentinel-2 cloud-free images and
the post-event Google Earth images. The area of interest
(AOI), henceforth called the Tanarello and Arroscia valleys,
shows an elevation up to 2500 m a.s.l. and a wide range of
land use and vegetation cover from the Mediterranean to the
alpine environment. The area intersects several river basins,
and the main catchments are the Tanaro–Tanerello, a part of
the Po River basin and the Arroscia stream flowing to the
Ligurian Sea. From a geological point of view (Fig. 1b), the
northern sector of the area is occupied by the Briançonnaise
Zone of the middle Pennidic nappe. This unit is represented
by limestone–dolomite, which creates steep slopes, as well
as conglomerate and volcanic formations (rhyolite). In the
southern part of the area is an outcropping of the Helminthoid
Flysch formations of Monte Saccarello–San Remo, made by
a limestone–clay sequence, and the sandstone–siltstone se-
quence of the San Bartolomeo Formation (Lanteaume et al.,
1990; Pepe et al., 2015). The Tanarello and Arroscia Val-
ley area has a sparse human settlement and low population
density, ranging from 40 to 1 inhabitant per square kilome-
tre. Most of the inhabitants live in Ormea and Pieve di Teco.
Most of the area is occupied by broadleaf forests in the lower
part and coniferous forest, grassland and pasture at high alti-
tudes.

The area affected by the heavy rainfall event in 2019
(about 530 km2) is located between the Bormida River and
Lemme valleys, in the south-eastern Piemonte region. The
considered area has been delimited considering the effects
of the event based on the rainfall data, image coverage and
reports on damages. The study area mostly overlaps with
the Tertiary Piedmont Basin (TPB): a sedimentary succes-
sion from Oligocene conglomerates in the south to Pliocene
mudstone in the northern part (Fig. 2b). Three main geolog-
ical formations outcrop in the detailed training areas, from
south to north: the Cortemillia Formation (made by arenite
and mudstone), the Cessole Marls (made by carbonate-rich
mudstone and arenite) and the Serravalle Formation (made
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Figure 1. The Arroscia–Tanarello November 2016 event. (a) Location of the study area, (b) simplified geological map based on Lanteaume
et al. (1990) and (c) accumulated rainfall from 20 to 25 November 2016 in the study area. (d) Hourly cumulated rainfall for some rain
gauge stations of study areas. Rainfall source: ARPA (Agenzia Regionale Protezione Ambiente) Piemonte and ARPAL (Agenzia Regionale
Protezione Ambiente Liguria). Shaded reliefs of maps in panels (b) and (c) are based on the DTM of ARPA Piemonte and Liguria.

by arenite and sandstone). The southern part is occupied by
ophiolitic rocks of the Ligurian oceanic unit (Piana et al.,
2017). Alluvial quaternary deposits occupy the bottom of the
valley. Several small creeks cross the study area with S–N
directions that, in the 2019 event, caused flash floods (Man-
darino et al., 2021). The presence of a gentle hilly landscape
characterises the geomorphology of the area. However, the
slope is steeper in the northern sector than in the rest of the
training area, where the Serravalle Formation outcrops. The
vineyards (region of the Gavi grape) are mainly located in the
central and southern parts of the study area (Cessole Marl
formations). In contrast, the north-western part is mainly
covered by broadleaf forest, sclerophyllous vegetation and
shrubs. Several villages and the small town of Gavi are lo-
cated inside the AOI, henceforth called the Gavi area. Shal-
low landslides frequently hit the castle of Gavi hill, such as
during the 2014, 1977 and 1935 events (Govi, 1978; Man-
darino et al., 2021).

From a climatological point of view (Fratianni and Ac-
quaotta, 2017), Tanarello–Arroscia is between the Alpine

and Ligurian–Tyrrhenian climate area, while the Gavi area
is between Po Plain and the upper Adriatic region as well
as the Alpine and Ligurian–Tyrrhenian zones. Moreover, the
area of Gavi is also close to the area with a high frequency
of intense rainfall (Fratianni and Acquaotta, 2017) in the NE
sector of Liguria.

Recently, global warming and the related sea temperature
increase likely caused a positive trend of extreme rainfall
events in the area of the Ligurian Sea, especially on a short
time interval (i.e. < 24 h) (Gallus et al., 2018; Paliaga and
Parodi, 2022; Roccati et al., 2020).

2.1 The 20–25 November 2016 event in the Tanarello
and Arroscia valleys

Historical information tells us that the Liguria region and
NW Alps have usually been affected by several extreme rain-
fall events, usually during autumn (D’Amato Avanzi et al.,
2015; Cevasco et al., 2014; Ferrari et al., 2021; Roccati et
al., 2018; Guzzetti et al., 2004; Luino, 1999). From 20 to
25 November 2016, a low-pressure area affected the west-
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Figure 2. The Gavi October 2019 event. (a) Location of the study area, (b) simplified lithological map of the study area based on Piana et
al. (2017) and (c) accumulated rainfall from the 21 to 22 October 2019 event. (d) Hourly cumulated rainfall for some rain gauge stations of
study areas. (Rainfall data source: ARPA Piemonte). Shaded reliefs of maps in panels (b) and (c) are based on the DTM of ARPA Piemonte
and Liguria.

ern Mediterranean Sea (Nimbus Web Eventi Meteorologici,
2022), causing heavy and persistent rainfall that hit NW Italy,
and with high severity the Ligurian Alps. The upper valleys
of the Tanarello and Arroscia streams (at the border between
the Liguria and Piemonte regions) were the most severely
hit by this event, and the rainfall accumulation reached 650–
700 mm (Fig. 1c). The rain gauge station of Piaggia reached
a value of 690 mm over 5 d, which is far higher than previous
extreme events of the last 70 years (Fig. 1d). The dense net-
work of rainfall gauges of ARPA Piemonte and ARPA Lig-
uria (the regional agencies for environmental protection) al-
lowed us to create a 1 km spatial resolution map of accumu-
lated rainfall and compare precipitation time series for some
stations. This heavy rainfall triggered many shallow land-
slides partly mapped with field surveys in Arroscia Valley
(Pepe et al., 2019). Also, deeper landslides were triggered,
like in the case of the village Monesi di Mendatica, which
was partly destroyed by such a kind of landslide (ARPA
Piemonte, 2018; Notti et al., 2021). Despite the limited hu-
man presence, the damages are estimated to be several mil-
lions of Euros for public infrastructures only.

2.2 The 21–22 October 2019 event in the Gavi area

The October to December 2019 period has been charac-
terised by numerous meteorological events that hit NW
Italy, causing an extremely rainy period (Copernicus Cli-
mate Change Service, 2019). In particular, on 19–21 Octo-
ber 2019, an extreme rainfall event hit the area between the
Liguria and Piemonte regions, causing severe floods and dif-
fuse shallow landslides in the basins of the Orba and Bormida
rivers (Mandarino et al., 2021). This event was caused by a
semi-stationary V-shaped storm over a relatively small area
with extreme rainfall (Fig. 2c) both in hourly intensity and
in total accumulation (Mercalli, 2019). This event activated
many shallow and deep landslides. In particular, we focused
on the area near the town of Gavi where the rain gauge
registered about 480 mm per 24 h, and most of the rainfall
(318 mm) was concentrated in 6 h intervals (Fig. 2d) (Mete-
ologix, 2022). It is one of the highest rainfall records in the
Piemonte region; just 5 years before (October 2014), extreme
rainfall hit the same area. The extreme rainfall events of au-
tumn 2019 caused estimated damages of EUR 16 million in
the province of Alessandria (Regione Piemonte, 2021). After
the October 2019 event, a particularly wet period triggered
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other shallow landslides in the study area until December
2019.

3 Materials and methods

One of the main effects caused by the activation of shallow
landslides is the reduction in vegetation cover that creates
a radiometric signature variation often detected by multi-
spectral satellites. Thus, the NDVI is one of the most used
band indexes to detect these variations (Fiorucci et al., 2019;
Lu et al., 2019; Mondini et al., 2011). For this reason, we
create a semi-automatic methodology that deals with pre-
and post-event NDVI variation based on free satellite images
with the best spatial resolution (Sentinel-2, nowadays).

Our methodology, resumed in Fig. 3, aims to produce
an inventory of potential shallow landslides (PLs) based on
NDVI and geomorphological filters. The proposed method
has two main phases: (i) in the first one, a semi-automatic
methodology, divided into three main steps, identifies the po-
tential high-density shallow landslide areas; (ii) in the sec-
ond phase the semi-automatic inventory will further be used
to support the manual mapping of landslides on very-high-
resolution images. Time series of NDVI computed on GEE
were also used to evaluate the vegetation recovery.

3.1 Potential landslide detection methodology

The proposed methodology (Fig. 3) is aimed at creating a
PL inventory based on the semi-automatic procedure. The
mapping method is based on the availability of pre- and
post-event moderate-resolution (10 m) satellite images. This
methodology is intended to detect surface changes, which are
signs of potential shallow landslides, between pre- and post-
event images. The PL inventory is aimed at delimiting the
area most affected by shallow landslides and supports a sub-
sequent detailed landslide mapping on very-high-resolution
(< 1 m) images (satellite or aerial based). The PL is not a ge-
omorphological landslide inventory because the shape of PLs
is extracted with a semi-automatic procedure and is based
on middle-resolution images. The PL inventory is created in
three main steps: (i) satellite image selection, (ii) the calcu-
lation of the normalised difference vegetation index varia-
tion (NDVIvar) and the definition of the empirical NDVIvar
threshold that is adopted for the potential landslide mapping,
and (iii) the implementation of a filter using terrain and other
geomorphological properties to obtain the potential shallow
landslide (PL) inventory and the PL density maps. Thus, the
PL inventory is compared over a training area covered by
high-resolution images with a manually drawn dataset, i.e.
manual landslides (MLs). This comparison phase is impor-
tant because it is used for checking the efficiency of the PL
methodology and refining the calibration of adopted param-
eters with iteration processes to improve the quality of the
final PL inventory, reducing errors. The proposed method-

ology is exclusively based on cost-free software (e.g. QGIS,
QGIS Association, 2022; SAGA GIS, Conrad et al., 2015; R,
R Core Team, 2020) and cloud computing (e.g. GEE). In the
following sections, the procedure is discussed in more detail.

3.1.1 Satellite image selection

The first step is the selection of the best pairs of pre- and
post-event satellite images aimed at making a change detec-
tion analysis. Nowadays, the free satellite images with the
best resolution are Sentinel-2 (10 m visible and near-infrared
bands) followed by Landsat ones (30 m).

We search for images and filter images using the following
criteria:

i. cloud cover < 5 %;

ii. images acquired in the same period of the year to min-
imise the effect of shadow and canopy cover changes
related to different seasons;

iii. the season with the highest NDVI to obtain a strong con-
trast in NDVI, no snow coverage, and a short shadow.
The constraint period depends on local climatological
conditions (e.g. summer from June to September in the
middle latitude of the N Hemisphere).

To improve the search for the best pair of images, we also
used output from a GEE processing based on the code de-
veloped by Nowak et al. (2021). The processing calculates a
temporally averaged NDVI time series from a satellite image
collection (e.g. Sentinel-2) filtered by cloud cover (< 5 %, or
less if possible) over selected sample polygons that can di-
rectly be drawn on the satellite map interface of GEE. The
time series plotted in a GEE chart can be exported to a CSV
file for further filtering (e.g. replicate date removal) and anal-
ysis. We obtained a limited number of pairs of pre- and post-
event images with these constraints.

3.1.2 NDVIvar calculation and threshold

In the second step, we calculated NDVIvar by computing the
NDVI variation between the pre- and post-event conditions
(Eq. 1). The aim is to identify areas with decreased NDVI
values due to vegetation removal or damage caused by shal-
low landslides. Using the raster calculator of QGIS software,
we computed the NDVI using the NIR and red band.

In the specific case of our study areas, we use the Sentinel-
2 band of NIR (Band 8) and red (Band 4), which have a spa-
tial resolution of 10 m:

NDVIvar = NDVIpost−NDVIpre, (1)

where

NDVI= (NIR−Red)/(NIR+Red).

Then we manually select the NDVIvar threshold that best
identifies changes related to landslides. This threshold does
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Figure 3. Flowchart of proposed shallow landslide mapping methodology.

not have a fixed value, as reported in the literature (Hölbling
et al., 2015; Mondini et al., 2011). An operator manually de-
termines it after a visual assessment of NDVIvar, the compar-
ison on GEE of the NDVI times series between affected and
not affected areas, and the calibration of the parameters based
on a PL–ML inventory comparison (back analysis). For in-
stance, in our study areas, both the visual pattern of NDVIvar
and the observation of the NDVI time series suggest that the
optimal threshold should be in the range of −0.20 to −0.15,
but this could be different for other cases.

3.1.3 Geomorphological filtering to create PL inventory

In the third step, the results coming from NDVIvar are filtered
using geomorphological parameters (Table 2). We first used
the slope derived from DTM (downloaded from Regione
Piemonte, 2011, and Regione Liguria, 2022, databases) to
filter out the areas with a slope angle below a certain thresh-
old. Also, in this case, the value is empirically based on the
visual pattern and back analysis (slope distribution of ML).
Specifically, to create PL, we applied this procedure: (i) the
rasters of NDVIvar and slope are converted in a Boolean
raster (0–1) using the thresholds mentioned above (e.g.
B = [NDVIvar <−0.16 and slope > 15◦]) in a raster calcula-
tor of QGIS, where in the computed raster the value 1 corre-
sponds to the potential shallow landslides (PLs); (ii) then on
QGIS, we convert the value 1 of the raster into vectors (poly-

gon); (iii) the median slope (always with QGIS) is calculated
for each PL polygon and further filtered with a certain thresh-
old (e.g. > 17◦); and (iv) the polygons are smoothed to ob-
tain a more geomorphological shape. Additional filters may
be introduced based on radiometric (e.g. removing the area in
permanent shadow) or geometric parameters (e.g. removing
the PL that overlaps with a riverbed). These filters based on
empirical thresholds should be evaluated case by case, con-
sidering the morphology, the land-use data and the ancillary
data available in the study area. We finally obtained the final
PL inventory with its centroid.

We used the PL centroid to create with QGIS a kernel (Ter-
rell and Scott, 1992) heatmap relative density (KD) map of
relative PL. The PL KD aims to identify the most affected
area. The parameters (e.g. search radius, size of the cell) used
to generate KD maps depend on the dimension of the study
area and the average distance of PL centroids. The same pro-
cedure is applied to the ML to create a density map for in-
ventory comparison.

3.1.4 Parameter calibration based on ML inventory
comparison

Usually, manual mapping is done on a representative training
area (e.g. at least 70 % of the whole AOI) (Mondini et al.,
2011; Mohan et al., 2021; Trigila et al., 2013), and it is used
as a benchmark dataset for calibrating the proposed method,
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then it is validated on a small area (30 %). In this work, hav-
ing to test a new methodology, we decided to operate through
calibration and manual mapping on 100 % of the area of in-
terest to determine if the technique is sufficiently robust.

The first PL inventory is then compared with an ML drawn
on high-resolution images in a limited subarea of the AOI.

The identification of the training area is based on the
following criteria: (i) the availability of cost-free high-
resolution post-event images; (ii) PL density, calculated with
the method described in the previous paragraph; (iii) the in-
tensity of the event (e.g. accumulated rainfall); and (iv) the
representativity of the study area in terms of land use and
geomorphology. Once the result of the training area is avail-
able, it is possible to evaluate the statistical distribution of the
ML inventory in terms of NDVIvar, slope angle or other pa-
rameters for a better empirical calibration of the thresholds
used to create the PL. The calibration step aims to reduce
false positives and false negatives and to obtain the definitive
PL inventory.

3.2 Data, parameters and thresholds used for the case
studies

We applied the methodology described above to our two case
studies; for each, we chose the data and parameters described
in the following paragraphs. The “Data availability” section
provides the link to the original databases used.

3.2.1 Satellite data and geomorphological filters

Following the methodology described in Sect. 3.1, we first
selected the pre- and post-event images. For our case stud-
ies, we used the data of Sentinel-2 satellites (bottom-of-
atmosphere reflectance in cartographic geometry – L2A)
available on the Sentinel Hub portal (Copernicus Open Ac-
cess Hub, 2023). In particular, we downloaded the 10 m res-
olution bands visible (B2, B3, B4) and near-infrared (NIR –
B8), and we clipped the original datasets on the area of inter-
est. The datasets used in this study are listed in Table 1. For
the Gavi area, we find a pair of images with a 1-year interval,
while for the Tanarello and Arroscia Valley areas, the best
pair of cloud-free images is on a 2-year interval.

In the second step, we defined the NDVIvar and ge-
omorphological thresholds. In our case study, we used
NDVIvar≤−0.15 joined to slope > 15◦ entry values to create
the Boolean raster where the value 1 identifies the potential
landslides. The slope models were computed from 5 m DTM
available from the databases of the Piemonte and Liguria re-
gions and were adopted to the spatial resolution of Sentinel-
2 in the raster calculator of QGIS (i.e. it averages the val-
ues of four cells of 5× 5 m into one cell of 10× 10 m). The
Boolean raster keeps the same spatial resolution as Sentinel-
2 (10× 10 m pixel).

We used additional geomorphological thresholds, such as
the median slope of the PL polygons. The values were based
on the statistical distribution of the ML median slope. We
used the filter values’ median slopes≥ 17◦ and ≥ 20◦ for the
Tanarello and Arroscia Valley areas and the Gavi area, re-
spectively.

In the Tanarello and Arroscia Valley case, we removed the
polygons nearby (using an empiric buffer from 5 to 10 m)
the hydrographic network to remove false positives related
to riverbank erosion. We also filtered the areas in a constant
shadow because of a cliff, using threshold values of the av-
eraged means of the four 10 m bands (RGB and NIR) of
Sentinel-2 images. The PL polygons were finally smoothed
and merged if their distance was lower than 1 m.

3.2.2 High-resolution images for ML inventory

For our study, we employed a stringent calibration and vali-
dation methodology in both of our study areas, with an equal
ratio of 1 : 1. This differs from the commonly used approach
in the literature of a 7 : 3 ratio, as reported in studies such
as Mondini et al. (2011) and Mohan et al. (2021). Our de-
cision to utilise this methodology was motivated by the fact
that it was our first time implementing this approach. Fur-
thermore, we employed a statistical validation method that is
user-friendly and straightforward to replicate in future stud-
ies.

For the Tanarello–Arroscia case, the training–validation
area is about 300 km2, while it is 50 km2 for the Gavi 2019
case.

Concerning the Gavi area case study, we applied the pro-
posed methodology as in an ordinary scenario; therefore, we
performed over 10 % (about 50 km2) of the area training and
validation, and then, with the previously defined parameters,
we applied the method to 90 % (500 km2) of the area, pro-
ducing the inventory. The large 2019 area is also intended to
be used as a test inventory for other studies.

The manual mapping of the landslides was made (in early
2022) on very-high-resolution post-event images. In our case
study, high-resolution images were available for both ar-
eas, dating back to a few months after the events (Table 2).
We used the post-event satellite images available on Google
Earth uploaded as an XYZ tile layer on QGIS software
(Hafen, 2022). We also used pre-event high-resolution or-
thoimages available as a web map service (WMS) on the na-
tional cartographic service of Italy or the regional web map
service of the Piemonte and Liguria regions.

The manual polygons of landslides (MLs) were drawn fol-
lowing geomorphological criteria with the help of shaded re-
lief DTM. Two operators manually checked the inventories
to reduce the subjectivity of mapping. The landslide map-
ping was made on QGIS with the support of Google Earth
Pro for historical image visualisation.
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Table 1. Sentinel-2 images used in the selected case studies.

Case study Event date Image Band Spatial Pre-event Post-event Usage
source resolution images images

Tanarello and 20–26 November Sentinel-2 RGB; 10 m 23 August 28 August Semi-automatic
Arroscia valleys 2016 NIR 2016 2018 detection

GEE NDVI 10 m 2016–2021 NDVI time series

Gavi area 20–26 October Sentinel-2 RGB; 10 m 26 June 20 June Semi-automatic
2019 NIR 2019 2020 detection

GEE NDVI 10 m 2016–2021 NDVI time series

Table 2. High-resolution images used for ML mapping in this work.

Case study Image source Band Spatial
resolution

Pre-event images Post-event
images

Usage

Tanarello and
Arroscia valleys

Google Earth;
National Cartographic
Portal (PCN)

Visible 0.3 m 24 September 2015
2012

3 August 2017 PL validation and
manual mapping

Gavi area Google Earth;
Piemonte regional
webGIS service

Visible 0.3 m 1 June 2019
2018

7 April 2020
16 March 2021

PL validation

3.2.3 NDVI time series analysis using GEE

We also use GEE’s potentiality to check and compare the
NDVI time series affected by shallow landslides. We manu-
ally draw some sample polygons on the GEE interface, im-
ported as feature collections representative of different con-
ditions (landslide/no landslides) and land use. As for the
choice of the best images described in Sect. 3.1, we use code
based on Nowak et al. (2021). We also extract the NDVI time
series using the GEE time series explorer QGIS plugin (GEE
Timeseries Explorer, 2020); such script allows for produc-
ing single-pixel time series directly from a point vector. The
time series analysis aims to estimate vegetation recovery in
the area affected by shallow landslides and to compare it with
healthy areas. The vegetation recovery helps assess the max-
imum period in which a post-event image can be used to cal-
culate NDVIvar. The NDVI time series located in different
land uses were also compared using GEE.

3.3 PL and ML inventory comparison and statistics

We compared the PL with ML to evaluate the efficiency of
semi-automatic detection by using geoprocessing tools in a
GIS environment. Results were synthesised in a validation
matrix. The graphical sketch in Fig. 4 shows all the possi-
ble combinations. PL and ML vector layers were merged in
a unique layer to obtain the intersections between the two
datasets, thus getting true positives (TPs), then by selecting
residual PL (i.e. parts not included in the intersection) touch-
ing or not touching the intersection, partial positives (PPs)

and false positive (FPs) were detected. On the other hand,
partial detections (PDs) and false negatives (FNs) were de-
fined, respectively, by residual ML touching the intersection
sector and ML not intersecting with PL. The five categories
were merged in a unique vector layer for further analysis,
with the aforementioned classification stored in the attribute
table.

The three intersections involving PL (TP, PP and FP) were
used to analyse and validate the semi-automatic methodol-
ogy. Then, by overlaying them on the NDVI and slope an-
gle raster layer, mean values were calculated and stored for
each feature. Those values were then processed to obtain de-
scriptive statistics and frequency distributions in terms of the
previously described categories. The ML–PL comparison of
datasets was also used in an iteration process to enhance the
parameters to obtain the PL. The characteristics of FP and
TP (e.g. slope and NDVIvar distribution) allowed for improv-
ing the filters in semi-automatic detection. We applied some
equations similar to those commonly used in the literature
(Prakash et al., 2021; Nava et al., 2022; Catani, 2021) to
check the quality of automatic mapping. Thus, the false pos-
itive rate (FPR; Eq. 2) measures the percentage of the area
not correctly detected, and the detection rate (DR; Eq. 3) is
the percentage of shallow landslides (both fully and partially)
detected by the PL methodology. We also analyse the factors
influencing the DR, such as shallow landslide dimension or
land use.
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Figure 4. The five possible combinations of PL–ML intersection
cases with their description.

FPR= (FP)/[(FP)+ (TP)+ (PP)] (2)
DR= [(TP)+ (PD)]/[(TP)+ (PD)+ (FN)] (3)

We also compare the PL and ML inventories using the KD
maps made with the procedure described in Sect. 3.1.3. The
two densities, sampled on the same regular grid, are com-
pared in a scatterplot, and a correlation coefficient is calcu-
lated (Benesty et al., 2009).

4 Results and discussion

The proposed methodology was applied to the two case stud-
ies of the Tanarello and Arroscia valleys (2016) and the Gavi
area (2019). We obtained for both areas PL and ML inven-
tories with more than 1000 shallow landslides mapped for
each AOI. Statistics about the efficiency of PL are also pre-
sented in the following paragraphs. Finally, other ancillary
datasets were compared to analyse shallow landslide distri-
bution characteristics.

4.1 Tanarello and Arroscia Valley study area

The semi-automatic mapping based on NDVIvar of pre-event
(23 August 2016) and post-event (28 August 2018) Sentinel-
2 images for the Tanarello and Arroscia Valley study area
provided 1056 PLs.

Figure 5 shows an example of the steps and results of our
methodology over a sample area of the Arroscia–Tanerello
case study. From the comparison of pre- (Fig. 5a) and post-
event images (Fig. 5b), we obtained the NDVIvar that was

used to extrapolate the PL (Fig. 5c). Figure 5d compares the
ML drawn on high-resolution Google Earth satellite images
and the PL. A detailed 3-D view from Google Earth Pro of
pre- and post-event images is shown in Fig. 5e and f.

4.1.1 PL density and distribution

The distribution and kernel density (KD) (search radius
1000 m) of PL centroids are shown in Fig. 6a. At the basin
scale, there is a high density of PL in the central sec-
tor, particularly in the Arroscia, Armetta and Tanarello val-
leys, where the density reaches a peak of 10 centroids km−2.
Moreover, Fig. 6b shows a PL detail corresponding to river-
bank erosion not filtered out because the hydrographic net-
work has no precise high-resolution geocoding, and the de-
rived 5 m buffer did not intersect the PL. It is challenging
to create an affordable geomorphological filter discriminat-
ing river erosion from a shallow landslide in a steep valley,
and in many cases, the two processing overlap or are linked
by a cause–effect relationship. Figure 6c shows the correct
detection of a landslide; its shape is almost accurate consid-
ering the Sentinel-2 resolution, while Fig. 6d shows a shal-
low landslide not detected (false negative case) because the
shadow mask filters it out.

4.1.2 PL and ML intersection results

The manual mapping of landslides made on post-event
Google Earth and high-resolution satellite images was com-
pared with pre-event aerial photos of 2012 (MASE, 2012)
and allowed for the detection of 1098 MLs (average density
3 ML km−2). The intersection of PL and ML datasets pro-
duced about 2620 cases.

Figure 7a shows, over a sample area, some examples of
the intersection between PL and ML inventories. In Fig. 7b,
the intersections are classified into the five types of combi-
nations defined in Fig. 4. In some cases, the PL–ML over-
lapping (TP) is almost complete (intersection 1) in Fig. 7a
and b, while in others (intersection 2), TP cases represent
a small portion of the intersection. For the whole Tanarello
and Arroscia Valley case study, we also reported the inter-
section case pie charts by polygon count (Fig. 7c) and total
area (Fig. 7d). It can be noted that the biggest difference be-
tween count and area statistics (25 % to 13 %) is for the FN
case because it corresponds to many MLs with a small area.
In contrast, FP shows a slight increase because the size of
PLs is always more than 100 m2 (i.e. the Sentinel-2 spatial
resolution).

4.1.3 PL validation statistics

Detailed validation results for PL made with R (see Sect. 3.3)
are shown in Fig. 8. The chart of Fig. 8a shows the num-
ber distribution of TP, PP and FP cases. The TP represents
about 32 % of intersected PL summed with the PP, repre-
senting 29 % of intersections, showing that the methodology
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Figure 5. Example of shallow landslide detection methodology for the Tanarello and Arroscia Valley case study: (a) Sentinel-2 pre-event
images (RED-NIR-BLUE) acquired on 23 August 2016, (b) Sentinel-2 post-event images (RED-NIR-BLUE) acquired on 28 August 2018,
(c) NDVIvar map PL inventory, and (d) ML and PL inventory overlapped with a post-event high-resolution image (Google Earth – 2017).
Google Earth 3-D view of (e) pre- and (f) post-events of the area affected by landslides. Map data: © Google Earth 2022; image: © 2022
Maxar Technologies.

correctly detects a shallow landslide in 60 % of cases. The
area frequency distribution chart (Fig. 8b) indicates that the
PP cases have smaller areas (median 165 m2) than the TP
(230 m2) cases; this means that the TP increases in up to 38 %
of the cases considering the area sum instead of the polygon
count. Several FP cases correspond to fluvial processing like
bank erosion that filters could not remove. Some other re-
gions correspond to artificial forest cuts that occurred from

2016 to 2018. In addition, the only complete summer cloud-
free pair of images is August 2016 vs. August 2018, and this
extended period increased the probability of detecting land-
use change not related to landslides.

The NDVIvar and the slope are the main parameters used
to detect landslides; therefore, their distribution inside the
intersected PL–ML inventories helped us to understand the
efficiency of the semi-automatic approach. Figure 8c shows
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Figure 6. (a) The kernel landslide centroid relative density (search radius= 2500). (b) Detail of PL representing a riverbank erosion, (c) PL
that correctly detects the shallow landslide, (d) shallow landslides not detected by PL because it is filtered with a shadow mask. Map data:
© Google Earth 2022; image: © 2022 Maxar Technologies. The shaded relief of map (a) is based on 5 m DTMs of ARPA Piemonte and
Liguria.

the median NDVIvar for each class of ML–PL intersections.
The TP cases show NDVIvar values below the −0.16 thresh-
old, probably because the shallow landslides strongly impact
vegetation compared to other land-use changes. Figure 8d
shows the median slope distribution; in this case, there are
few differences among the classes because the slope filter
(17◦) removed most FPs related to the slope gradient. This
means that most FP cases are caused by a land-use change
or riverbank erosion with the same slope gradient of shallow
landslides.

The FN and PD intersection cases are discussed in
Sect. 4.3.1 because they are not coming from PL and are
not related to parameters used for PL methodology but to
the relation of landslide size with the spatial resolution of the
satellite.

4.2 Gavi area case study

For the Gavi area case study, we used the Sentinel-2 20 June
2019 (pre-event) and 26 June 2020 (post-event) images. The
semi-automatic mapping allowed us to obtain about 1077

PLs inside the training area and about 3100 in the whole
study area.

Figure 9 shows an example of the steps and results of our
methodology over a sample area of the Gavi 2019 case study.
From the comparison of pre- (Fig. 9a) and post-event images
(Fig. 9b), we obtained the NDVIvar (Fig. 9c), which was used
to extrapolate the PL. Figure 9d compares the ML drawn on
high-resolution Google Earth satellite images and the PL. A
detailed 3-D view from Google Earth Pro of the pre- and
post-event is shown in Fig. 9e and f.

4.2.1 PL density and distribution

Figure 10 shows the kernel centroid density (based on a
search radius of 1000 m) and distributions for the PL inven-
tory (Fig. 10a). About 3000 PLs were identified using the
parameters and the filters described in the methodology sec-
tion; 1100 of them are inside the training area. It can be ob-
served that the training and validation areas show the highest
PL density. Other areas of high PL density are located north
of Ovada and south of Acqui Terme. Here, manual mapping
on high-resolution (HR) images is proposed for further man-
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Figure 7. The Tanarello and Arroscia Valley case study. (a) The PL–ML inventory intersections over a sample area. (b) The PL–ML
intersection classified by type. Pie charts of the intersection type distribution by (c) number and (d) area. Map data: © Google Earth 2022;
image: © 2022 Maxar Technologies.

Figure 8. PL validation statistics for the Tanarello and Arroscia Valley case study: (a) bar plot showing the number of polygons of PLs
classified as TP, PP, and FP areas; (b) area frequency distribution of the polygons classified as TP, PP, and FP areas; (c) boxplot chart of
NDVIvar distribution for TP, PP, and FP classes; and (d) boxplot chart of median slope distribution for each class of the ML–PL intersection.
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Figure 9. Example of shallow landslide detection methodology for the Gavi 2019 case: (a) Sentinel-2 pre-event images (RED-NIR-BLUE)
acquired on 20 June 2019, (b) Sentinel-2 pre-event images (RED-NIR-BLUE) acquired on 26 June 2020, (c) NDVIvar map overlapped with
a Google Earth post-event image, and (d) comparison of ML and PL inventories overlapped with a Google Earth post-event image. Google
Earth 3-D view of (e) pre- and (f) post-events of the area affected by landslides. Map data: © Google Earth 2022; image: © 2022 Maxar
Technologies.

ual mapping. It is possible to analyse the different cases of
PL methodology results in more detail. Figure 10b shows
the correct detection of a landslide, and its shape is almost
accurate considering the Sentinel-2 resolution. Figure 10c
shows a PL that partly detected shallow landslides: in many
cases, the trigger points are detected because of their abrupt
changes, while the bottom part with more shallow sediment
flow is not detected. Two small shallow landslides not caught
on Sentinel-2 images are also shown. Figure 10d shows a
false positive case where PL most probably detected a change
in vegetation activity within a vineyard.

4.2.2 PL and ML intersection results

Also, for the Gavi area case study, we made similar statis-
tics for the inventory intersection used for the Tanarello and
Arroscia Valley case study. The manual mapping of land-
slides, made on post-event Google Earth, and high-resolution
satellite images compared with pre-event aerial photos of
2018 (Regione Piemonte, 2020) resulted in 1178 MLs (av-
erage density 23 ML km−2). The intersection of PL and ML
datasets produced about 2982 cases.
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Figure 10. The October 2019 event. (a) PL centroid relative kernel density (R= 1000) over the whole AOI. Some examples of PL: (b) PL
that completely overlaps a shallow landslide, (c) PL that partly overlaps a shallow landslide, and (d) PL that corresponds to a false positive
case. Map data: © Google Earth 2022; image: © 2022 Maxar Technologies. The shaded relief of map (a) is based on the 5 m DTM of ARPA
Piemonte.

Figure 11a shows, over a sample area, some examples of
the intersection of PL and ML inventories. In Fig. 11b, the in-
tersections are classified into the five types of combinations
(TP, FP, FN, PD and PP) defined in Fig. 4. In some cases,
the PL–ML overlapping (TP) is almost complete (case 1) or
partial (case 2). In other cases (3) the PL allowed us to de-
tect only a tiny portion of the intersection, and most of the
shallow landslide area was classified as PD. For the whole
2019 study area, we also represented the intersection case
pie charts by polygon count (Fig. 11c) and area (Fig. 7d). It
can be noted that in contrast to the 2016 case, there is little
difference between the count by number or total areas. The
different distributions of ML size (see Fig. 13b) could explain
this.

4.2.3 PL validation statistics

Detailed validation statistics results for PL made with R (see
Sect. 3.3) are shown in Fig. 12. The chart of Fig. 12a shows
the number distribution of TP, PP and FP cases. The TP rep-
resents about 43 % of intersected PL summed with the PP,
representing 37 % of cases, showing that the methodology
correctly detects a shallow landslide in 80 % of cases. The

results of semi-automatic mapping for the Gavi AOI are bet-
ter than for the Arroscia–Tanarello AOI. The better perfor-
mances could be explained by a better pair of pre- and post-
event images and the stronger magnitude of the 2019 event.
The area frequency distribution chart (Fig. 12b) shows that
the partial positive cases have smaller areas (median 165 m2)
than TP (230 m2); this implies that the percentage of TP rises
from 43 % to 49 % of PLs considering the area sum instead of
polygon count. FP cases generally correspond to changes in
agriculture activity that occurred in 2019–2020 in the vine-
yard. As previously stated, NDVIvar and slope were analysed
in terms of intersection class and provided the same insight
concerning the influence of vegetation health and acclivity.

As mentioned in the Tanarello and Arroscia case study
(Sect. 4.1.3), The FN and PD intersection cases are discussed
in Sect. 4.3.1.

4.3 Factors that influence shallow landslide detection
and false positives

In this section, we discuss the main factors that, according
to our results, influence the efficiency of the proposed PL
methodology. As already done in the literature, the landslide
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Figure 11. The 2019 Gavi case study. (a) The PL–ML inventory intersections over a sample area. (b) The PL–ML intersection classified
by type. Pie charts of the intersection type distribution by (c) number and (d) area. Map data: © Google Earth 2022; image: © 2022 Maxar
Technologies.

size (Bellugi et al., 2021; Fiorucci et al., 2018), land use
(Mondini et al., 2011) and temporal interval (Lindsay et al.,
2022; Scheip and Wegmann, 2021) used in the pre- and post-
event calculation seem the most interesting to discuss on the
basis of our results.

4.3.1 Shallow landslide size, density and distributions

The detection capacity is mainly related to shallow landslide
size and the spatial resolution of Sentinel-2.

Figure 13a and b show the histogram distribution of ML
size for the Tanarello and Arroscia valleys and Gavi study
areas, respectively. The ML size distribution agrees with the
classical power-law distribution of shallow landslides (Bel-
lugi et al., 2021; Guzzetti et al., 2002) for both cases studied.
This means that the shallow landslides smaller than 500 m2

are about 60 % of all ML inventories, but they represent only
20 % of the total area affected. The histograms also show that
for the Tanarello and Arroscia valleys (Fig. 13a), the MLs
are generally smaller than in the Gavi area. The parts of the
bars that are black coloured show the ML intersected by PL
(TP+PD intersection cases). It is possible to note that the
small landslides (100 m2) are underestimated by PL, while

for large landslides, PL almost fits the ML. These results
agree with the area frequency distribution for TP and PD
cases shown in Figs. 8b and 12b.

Figure 13c and d show the DR calculated with Eq. (2)
for the Tanarello and Arroscia valleys and Gavi study areas.
The DR increases with the size of the landslides, and it is
strictly related to the pixel size of Sentinel-2. For the land-
slides smaller than 100 m2 (Sentinel-2 spatial resolution),
the DR ranges from 10 % for Tanarello and Arroscia Valley
(Fig. 13c) to 15 % for the Gavi area (Fig. 13d). It is clear that
for these landslides, the Sentinel-2 platform is not the optimal
choice (Fiorucci et al., 2018), and manual mapping on high-
resolution images is better than semi-automatic mapping. On
the other hand, for the ML in the class area (500–1000, i.e.
5–10 pixels of a Sentinel-2 image), the DR ranges from 65 %
for Tanarello and Arroscia Valley to 80 % for the Gavi area.

The overall DR considering polygon count is 39 % for the
Tanarello and Arroscia Valley and 58 % for the Gavi case
study, while considering the area sum, the DR is 60 % and
75 %, respectively. The Gavi case study’s better performance
is likely related to the size distribution of shallow landslides
and the better pair of images used to create PL.

https://doi.org/10.5194/nhess-23-2625-2023 Nat. Hazards Earth Syst. Sci., 23, 2625–2648, 2023



2640 D. Notti et al.: Semi-automatic methodology for shallow landslide mapping

Figure 12. PL validation statistics for the 2019 Gavi study area: (a) bar plot showing the number of polygons of PL classified as TP, PP, and
FP areas; (b) area frequency distribution for the polygons classified as TP, PP, and FP areas; (c) boxplot chart of NDVIvar distribution for TP,
PP, and FP classes; (d) boxplot chart of median slope distribution for each class of the ML–PL intersection.

Table 3. Performance metrics of this methodology.

AOI P R F1

Arroscia–Tanarello 2016 45 % 64 % 0.529
Gavi 2019 69 % 57 % 0.623

The performance metrics precision (P )
P =TP / (TP+FP), recall R=TP / (TP+FN) and F1
score F1= 2TP / (2TP+FP+FN) without considering
the intersection cases are reported in Table 3. The over-
all performance of our methodology is comparable with
other studies, especially those using middle-resolution
images (Ghorbanzadeh et al., 2021; Mondini et al., 2011;
Handwerger et al., 2022). A recent study (Ganerød et al.,
2023) using Sentinel-2 has shown different performances
depending on the study area in Norway; the best is from
the deep-learning approach with a U-net architecture. Using
high-resolution Planet images (Bhuyan et al., 2023) achieves
high performance over several study areas. However, we
assume that the different study/training/validation settings,
the image used and the event type made this comparison
relative.

Both in the Tanarello and Arroscia valleys and Gavi areas
do the results of spatial correlation of ML and PL density
show a good agreement (Fig. 14), a further confirmation of
the effectiveness of the PL methodology. Specifically, in the

case of 2019, both ML and PL inventories, Fig. 14a and b,
show a higher density in the northern sector of the study area
and a lower density in the central region. Figure 14c shows
the scatterplot between the PL and ML density; the corre-
lation coefficient (Benesty et al., 2009) has a value of 0.85
with an R2

= 0.73 using a grid of 1000 m. Moreover, the av-
erage ML density is about 23 ML km−2 higher than the 2016
event (3.1 ML km−2). The difference is probably related to
the more intense rainfall of October 2019 (up to 500 mm in
24 h) compared to the 2016 case (700 mm in 5 d).

We also manually checked Google Earth and noticed the
same performance in a small validation area outside the Gavi
training area.

In the case of 2016, there are more discrepancies. A higher
density of PL in the NE sector (Fig. 14d) can be noted. At
the same time, ML shows a density peak in the Arroscia
Valley (Fig. 14e). Both datasets show that centroids’ high
density is located in the central sector, particularly in the
Arroscia, Armetta and Tanarello valleys, where the density
reaches a peak of 10 centroids km−2. At the basin scale, PL–
ML regressions show a correlation coefficient of 0.68 with
an R2

= 0.47 using a grid of 2500 m (Fig. 14f).

4.3.2 The effect of land use on PL methodology
efficiency

We deeply investigate the role of land use in landslide detec-
tion. The semi-automatic detection performed well for nat-
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Figure 13. Histogram of ML area distribution for the Tanarello and Arroscia valleys (a) and Gavi (b) study areas: the grey bars represent the
entire ML inventory, while the black ones represent the ML intersected by a PL. The detection rate (DR) for each area class for the Tanarello
and Arroscia Valley (c) and Gavi area (d) case study. The size of the circle is correlated with the number of detected MLs; the colour scale
represents the total number of MLs for each class.

urally vegetated slopes, while the detection capability de-
creased for cultivated landscapes.

For instance, the statistics on intersection cases for the four
main land-use classes (Land Cover Piemonte, 2022) made for
the 2019 case study allowed us to understand the variable re-
garding the land-use efficiency of semi-automatic mapping.

The forest and the new forested shrub areas (Fig. 15a and
b) show a high percentage of TP cases, and about 80 % of PL
corresponds to shallow landslides. Here, human disturbances
are limited, and the majority of NDVIvar is related to land-
slides. The FN (15 % of the area) fits small landslides not
detectable with Sentinel-2 because of its spatial resolution.

The vineyard land use (Fig. 15c) shows a high FP per-
centage (37 %). In this land use, most FP cases are changes
related to vineyard management. FN is also higher (22 %)
compared to the forested areas. The cultivated land (Fig. 15d)
shows a high percentage of FN (30 %). The underestimation
can be explained by smaller landslide dimensions and the
agricultural practice that erases the signs of landslides.

4.3.3 NDVI time series based on GEE

Figure 16a and b show the NDVI time series based on
Sentinel-2 computed on GEE (see “Data availability” sec-
tion). The NDVI time series of the area affected by shallow
landslides (red line in Fig. 16) is based on averaged NDVI of
a subset of ML polygons with an area of at least 500 m2. This
time series is compared with the time series averaged over a
region not affected by landslides (black line in Fig. 16).

In the case of the Arroscia–Tanarello 2016 study area
(Fig. 16a), it can be observed that in the areas not affected by
landslides, the NDVI has a relatively constant seasonal trend
during 2015–2021, ranging from 0.25 in winter to 0.75 in
summer. On the contrary, the areas affected by shallow land-
slides showed a substantial decrease in NDVI (from 0.75 to
0.4) in the post-event 2017 summer. The NDVI slowly in-
creased during the following years, up to the value of 0.55
in 2021. If we compare the pair images (23 August 2016,
28 August 2018) used to extract the PL, we can observe an
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Figure 14. Heatmap kernel density for the (a) Gavi PL inventory, (b) Gavi ML inventory, (d) Tanarello and Arroscia Valley PL inventory,
and (e) Tanarello and Arroscia Valley ML inventory. Scatterplot of ML–PL kernel density comparison for the (c) Gavi training area and
(f) Tanarello and Arroscia Valley study area. Shaded reliefs of maps (a), (b), (d) and (e) are based on 5 m DTMs of ARPA Piemonte and
Liguria.

Figure 15. The Gavi 2019 case study. PL–ML intersection distri-
bution for the main land-use classes: (a) broadleaf forest, (b) new
forest or shrubland, (c) vineyard, (d) and cultivated land.

average NDVIvar of −0.2. Unfortunately, the summer 2017
images that show the best NDVIvar are not fully cloud free or
are not acquired in the same seasonal period.

In the case of the Gavi case study (Fig. 16b), in those ar-
eas not affected by landslides, the NDVI has a constant sea-
sonal trend during the period 2016–2021, ranging from 0.2 in
winter to 0.8 in summer. In contrast, the NDVI of the areas
affected by shallow landslides shows a substantial decrease,
showing a value of 0.6 (−0.2 variation) in the 2020 summer.
The NDVI value rebounded to 0.65 in 2021. The pair images
(26 June 2019, 20 June 2020) used to extract the PL show an
average NDVIvar of −0.15. The vegetation seems to recover
faster compared to the 2016 case.

The effects of land use on detection capabilities are diffi-
cult to solve with simple filters. A partial solution could be
the NDVI time series analysis. The analysis of the single-
pixel time series of NDVI, generated with the GEE QGIS
plugin (GEE Timeseries Explorer, 2020), allowed us to bet-
ter understand the effect of landslide size and land use on the
capacity detection of Sentinel-2; the main results are resumed
in Fig. 17.

Figure 17a and a’ show the location and the comparison of
two NDVI time series in a broadleaf forest land use: the 1-p
is entirely inside an ML of approximately 1500 m2, while the
2-p is an undisturbed area. The two time series show almost
the same seasonal trend until the 2019 event; after this, the
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Figure 16. NDVI time series based on Sentinel-2 data and processed with GEE: the “Slides” black lines are the averaged time series of
the selected ML; the “no slides” grey lines are the time series of the surrounding unaffected areas. (a) 2016 Arroscia–Tanarello case study;
(b) 2019 Gavi case study.

NDVI of 1-p shows values of 0.2 less than the NDVI of 2-p
in the 2020 summer.

Figure 17b and b’ show the location and the comparison
for two single-pixel time series located in a vineyard land
use. In this case, the 5-p is situated in an ML with an ap-
proximate size of 500 m2 not detected by PL methodology (a
false negative case). Both slide (5-p) and no-slide (6-p) NDVI
time series show an irregular trend, probably related to the
agricultural activity inside the vineyard. The post-event time
series shows lower NDVI values for the pixel inside the ML;
however, the noise is too high to extract a clear trend.

Figure 17c and c’ show the location and NDVI time series
of a false positive PL in a vineyard land use (9-p). In this
case, the agricultural activity inside the vineyard caused a
NDVIvar <−0.16 using the pre- and post-event pair images.
However, if we look at the whole time series, there is no trace
of the effect of shallow landslides.

Instead of considering single pre- (26 June 2019) and post-
event (20 June 2020) dates, the noise could be reduced if
we use the averaged pre- and post-event summer (May–

September) images. Multi-temporal-averaged satellite data
on GEE have already been used to improve landslide detec-
tion (Lindsay et al., 2022). For instance, using this approach,
the FP of Fig. 17c disappears because the NDVIvar is −0.16
for single pairs, while it is −0.03 for the averaged summer
periods.

The summer-averaged pre- and post-event NDVIs com-
puted with GEE for the Gavi area are available in the “Data
availability” section.

5 Conclusions

A low-cost semi-automatic methodology to detect shallow
landslides using cost-free data from Sentinel-2 satellites was
implemented and tested in exemplary cases. The imple-
mented user-friendly processing is aimed to be used by a
wide range of final users, such as technicians or natural haz-
ard planners with low expertise in remote sensing processing
and computer science. Landslide data and GEE scripts were
also available in the free storage database for researcher and
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Figure 17. NDVI time series (2017–2021 of five sample points (landslide and no landslide) in the area affected by the 2019 event. (a, a’) Com-
parison located in a broadleaf forest (true positive); (b, b’) vineyard (false negative); (c, c’) vineyard (false positive). The Google Earth
satellite image was acquired on 16 March 2021. Map data: © Google Earth 2022; image: © 2022 Maxar Technologies.

community users. We test the methodology on two extreme
rainfall events that affected NW Italy in November 2016
(Tanerello and Arroscia valleys) and October 2019 (Gavi
area).

We obtain a polygon dataset representing potential shallow
landslides (PLs) and their density maps with semi-automatic
mapping. The PL density maps aim to identify the most af-
fected areas in which to focus the manual mapping on high-
resolution images. The PL dataset is created with a three-step

approach: (i) choosing the best pair of Sentinel-2 images also
with the help of the NDVI time series computed with Google
Earth Engine (GEE), (ii) creating the NDVIvar map from pre-
and post-event images, (iii) using geomorphological filters
based on slope and other parameters such as distance from
the hydrographic network, and (iv) eventually re-calibrating
the PL parameters with landslides manually detected (ML).
In the study areas of Tanarello and Arroscia Valley and Gavi,
1077 and 2576 PLs were detected, respectively. The areas
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with the highest PL density also match with areas most af-
fected by rainfall events.

The PL inventory was compared with manual mapping
based on high-resolution images in training and valida-
tion areas. We manually map landslides on cost-free high-
resolution images (e.g. Google Earth, national or regional
cartographic services). The manual mapping detected about
1100 MLs over 300 km

2
in the Tanarello and Arroscia val-

leys and about 1180 MLs over 55 km
2

in the Gavi area. The
PL datasets were then compared (ML). The ML and PL in-
ventory comparison shows a good agreement in density and
distributions, especially for the Gavi case study.

According to the findings, the semi-automatic method
can detect the majority (about 60 %) of shallow landslides
larger than 2 or 3 times the size of Sentinel-2 ground pixels
(100 m2). In contrast, the PL method can identify only 20 %
of small landslides (less than 100 m2 in size). In agreement
with the power-law, small landslides are a high number but
a small fraction of the affected area. Consequently, the false
negative represents 60 % to 40 % of the cases but only 20 %–
25 % of the affected area. In the future, using high-resolution
cost-free satellite images for semi-automatic methods could
drastically increase the detection capacity. Land use is an-
other factor that influences detection capacity: in the Gavi
study area, the detection rate reached 73 % on natural vege-
tation like forest land use, while in cultivated areas, DR de-
creased by up to 41 %.

The false positive rate (FPR) (28 % for the Gavi area and
48 % for the Tanarello and Arroscia valleys) is related to
riverbank erosions or an artificial change in the vegetation
pattern that was impossible to remove with geomorphologi-
cal filters. Also, for FPR, the land use drives the performance:
it ranges from 45 % for the vineyard to 20 % for the forest.

In summary, the PL inventory has strengths, such as its
ability to quickly map large areas, its cost-effectiveness and
its user-friendly processing. However, it also has limitations,
including low resolution and a higher likelihood of false pos-
itives. Therefore, the primary purpose of the PL inventory
is not to generate precise susceptibility or damage assess-
ment maps. Instead, it serves as an initial and swift assess-
ment map, allowing users to identify the most heavily im-
pacted areas. These areas can be targeted for further detailed
mapping or on-site field surveys. The analysis of the NDVI
time series with GEE was suitable to identify the best pair
of images and to monitor the behaviour of the vegetation of
affected areas. The best comparison is in the period of maxi-
mum vegetation activity (e.g. summer images for middle lati-
tude). The time series showed a progressive vegetation recov-
ery throughout the years, decreasing the detection capacity of
this approach. The time series analysis also suggested that an
averaged NDVI of summer periods could reduce the effect
of agricultural changes on vegetation and limit the false pos-
itives. The evidence indicated that multi-temporal analysis

needs to be developed to improve semi-automatic mapping
efficiency, which could be the focus of future studies.

Data availability. ML and PL datasets used in this study
are available in KML format on the Zenodo platform:
https://doi.org/10.5281/zenodo.8164752 (Notti et al., 2022).
Also all the Google Earth Engine scripts are stored in the same
dataset (PDF File) on Zenodo.

The Sentinel-2 images were downloaded from the Copernicus
Open Access Hub (under decommission from September 2023)
https://scihub.copernicus.eu/ (Copernicus Open Access Hub, 2023).

The high-resolution images were uploaded in QGIS as WMS lay-
ers from the following links:

– The Google Earth satellite layer XYZ tiles
are available on QGIS using the following ad-
dress string: https://opensourceoptions.com/blog/
how-to-add-google-satellite-imagery-and-google-maps-to-qgis/
as described by Hafen (2022).

– The 2012 orthophotos that cover both study areas are available
on the national cartographic service (PCN) WMS, http://www.
pcn.minambiente.it/mattm/servizio-wms/ (MASE, 2012).

– The Piemonte region 2018 orthophoto is available on
the following WMS, https://www.geoportale.piemonte.
it/geonetwork/srv/ita/catalog.search#/metadata/r_piemon:
98fe6c87-2721-4193-a35a-5af883badce7 (Regione Piemonte,
2020).

DTM data can be downloaded from the Piemonte and Liguria
region geo-portal:

– https://www.geoportale.piemonte.it/geonetwork/
srv/eng/catalog.search#/metadata/r_piemon:
224de2ac-023e-441c-9ae0-ea493b217a8e (Regione
Piemonte, 2011)

– https://srvcarto.regione.liguria.it/geoservices/apps/viewer/
pages/apps/download/index.html?id=2056 (Regione Liguria,
2022).

Google Earth Pro software was also used to map and check in-
ventories at high resolution.

Other data, such as land use, NDVI elaborations and meteorolog-
ical data, can be obtained from the first/corresponding author upon
reasonable request.
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