433 research outputs found

    Locating, and Utilising \u3cem\u3eFestuca Pratensis\u3c/em\u3e Genes for Winter Hardiness for the Future Development of More Persistent High Quality \u3cem\u3eLolium\u3c/em\u3e Cultivars

    Get PDF
    Genes for freezing-tolerance and winter hardiness were located in Festuca pratensis by QTL analysis and introgression-mapping. QTL for freezing-tolerance on F. pratensis chromosome 4 were orthologous to rice chromosome 3, and Triticeae chromosome 5. Increased energy dissipation during the autumn through a lower maximum quantum yield of photosystem II (PSII) was correlated with improved winter survival. Freezing tolerance in Lolium was achieved by the transfer and subsequent expression of F. pratensis genes from chromosome 4 that govern the expression of a non-photochemical (NPQ) mechanism for the dissipation of excess light energy under low temperature

    Remote mental health care interventions during the COVID-19 pandemic: an umbrella review

    Get PDF
    Mitigating the COVID-19 related disruptions in mental health care services is crucial in a time of increased mental health disorders. Numerous reviews have been conducted on the process of implementing technology- based mental health care during the pandemic. The research question of this umbrella review was to examine what the impact of COVID-19 was on access and delivery of mental health services and how mental health services have changed during the pandemic. A systematic search for systematic reviews and meta-analyses was conducted up to August 12, 2022, and 38 systematic reviews were identified. Main disruptions during COVID-19 were reduced access to outpatient mental health care and reduced admissions and earlier discharge from inpatient care. In response, synchronous telemental health tools such as videoconferencing were used to provide remote care similar to pre-COVID care, and to a lesser extent asynchronous virtual mental health tools such as apps. Implementation of synchronous tools were facilitated by time-efficiency and flexibility during the pandemic but there was a lack of accessibility for specific vulnerable populations. Main barriers among prac- titioners and patients to use digital mental health tools were poor technological literacy, particularly when preexisting inequalities existed, and beliefs about reduced therapeutic alliance particularly in case of severe mental disorders. Absence of organizational support for technological implementation of digital mental health interventions due to inadequate IT infrastructure, lack of funding, as well as lack of privacy and safety, chal- lenged implementation during COVID-19. Reviews were of low to moderate quality, covered heterogeneously designed primary studies and lacked findings of implementation in low- and middle-income countries. These gaps in the evidence were particularly prevalent in studies conducted early in the pandemic. This umbrella review shows that during the COVID-19 pandemic, practitioners and mental health care institutions mainly used synchronous telemental health tools, and to a lesser degree asynchronous tools to enable continued access to mental health care for patients. Numerous barriers to these tools were identified, and call for further improve- ments. In addition, more high quality research into comparative effectiveness and working mechanisms may improve scalability of mental health care in general and in future infectious disease outbreaks

    Integrating a newly developed BAC-based physical mapping resource for Lolium perenne with a genome-wide association study across a L. Perenne European ecotype collection identifies genomic contexts associated with agriculturally important traits

    Get PDF
    Background and Aims Lolium perenne (perennial ryegrass) is the most widely cultivated forage and amenity grass species in temperate areas worldwide and there is a need to understand the genetic architectures of key agricultural traits and crop characteristics that deliver wider environmental services. Our aim was to identify genomic regions associated with agriculturally important traits by integrating a bacterial artificial chromosome (BAC)-based physical map with a genome-wide association study (GWAS). Methods BAC-based physical maps for L. perenne were constructed from similar to 212 000 high-information-content fingerprints using Fingerprint Contig and Linear Topology Contig software. BAC clones were associated with both BAC-end sequences and a partial minimum tiling path sequence. A panel of 716 L. perenne diploid genotypes from 90 European accessions was assessed in the field over 2 years, and genotyped using a Lolium Infinium SNP array. The GWAS was carried out using a linear mixed model implemented in TASSEL, and extended genomic regions associated with significant markers were identified through integration with the physical map. Key Results Between similar to 3600 and 7500 physical map contigs were derived, depending on the software and probability thresholds used, and integrated with similar to 35 k sequenced BAC clones to develop a resource predicted to span the majority of the L. perenne genome. From the GWAS, eight different loci were significantly associated with heading date, plant width, plant biomass and water-soluble carbohydrate accumulation, seven of which could be associated with physical map contigs. This allowed the identification of a number of candidate genes. Conclusions Combining the physical mapping resource with the GWAS has allowed us to extend the search for candidate genes across larger regions of the L. perenne genome and identified a number of interesting gene model annotations. These physical maps will aid in validating future sequence-based assemblies of the L. perenne genome.UK Biotechnology and Biological Sciences Research Council [BB/J004405/1, BB/CSP1730/1, BB/G012342/1]; Germinal Holdings (UK); Syngenta (UK); Vialactia Biosciences (NZ)Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Institutional review board challenges related to community-based participatory research on human exposure to environmental toxins: A case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We report on the challenges of obtaining Institutional Review Board (IRB) coverage for a community-based participatory research (CBPR) environmental justice project, which involved reporting biomonitoring and household exposure results to participants, and included lay participation in research.</p> <p>Methods</p> <p>We draw on our experiences guiding a multi-partner CBPR project through university and state Institutional Review Board reviews, and other CBPR colleagues' written accounts and conference presentations and discussions. We also interviewed academics involved in CBPR to learn of their challenges with Institutional Review Boards.</p> <p>Results</p> <p>We found that Institutional Review Boards are generally unfamiliar with CBPR, reluctant to oversee community partners, and resistant to ongoing researcher-participant interaction. Institutional Review Boards sometimes unintentionally violate the very principles of beneficence and justice which they are supposed to uphold. For example, some Institutional Review Boards refuse to allow report-back of individual data to participants, which contradicts the CBPR principles that guide a growing number of projects. This causes significant delays and may divert research and dissemination efforts. Our extensive education of our university Institutional Review Board convinced them to provide human subjects protection coverage for two community-based organizations in our partnership.</p> <p>Conclusions</p> <p>IRBs and funders should develop clear, routine review guidelines that respect the unique qualities of CBPR, while researchers and community partners can educate IRB staff and board members about the objectives, ethical frameworks, and research methods of CBPR. These strategies can better protect research participants from the harm of unnecessary delays and exclusion from the research process, while facilitating the ethical communication of study results to participants and communities.</p

    DECTIN-1: A modifier protein in CTLA-4 haploinsufficiency.

    Get PDF
    Autosomal dominant loss-of-function (LoF) variants in cytotoxic T-lymphocyte associated protein 4 (CTLA4) cause immune dysregulation with autoimmunity, immunodeficiency and lymphoproliferation (IDAIL). Incomplete penetrance and variable expressivity are characteristic of IDAIL caused by CTLA-4 haploinsufficiency (CTLA-4h), pointing to a role for genetic modifiers. Here, we describe an IDAIL proband carrying a maternally inherited pathogenic CTLA4 variant and a paternally inherited rare LoF missense variant in CLEC7A, which encodes for the β-glucan pattern recognition receptor DECTIN-1. The CLEC7A variant led to a loss of DECTIN-1 dimerization and surface expression. Notably, DECTIN-1 stimulation promoted human and mouse regulatory T cell (Treg) differentiation from naïve αβ and γδ T cells, even in the absence of transforming growth factor-β. Consistent with DECTIN-1's Treg-boosting ability, partial DECTIN-1 deficiency exacerbated the Treg defect conferred by CTL4-4h. DECTIN-1/CLEC7A emerges as a modifier gene in CTLA-4h, increasing expressivity of CTLA4 variants and acting in functional epistasis with CTLA-4 to maintain immune homeostasis and tolerance.S

    Gene Properties and Chromatin State Influence the Accumulation of Transposable Elements in Genes

    Get PDF
    Transposable elements (TEs) are mobile DNA sequences found in the genomes of almost all species. By measuring the normalized coverage of TE sequences within genes, we identified sets of genes with conserved extremes of high/low TE density in the genomes of human, mouse and cow and denoted them as ‘shared upper/lower outliers (SUOs/SLOs)’. By comparing these outlier genes to the genomic background, we show that a large proportion of SUOs are involved in metabolic pathways and tend to be mammal-specific, whereas many SLOs are related to developmental processes and have more ancient origins. Furthermore, the proportions of different types of TEs within human and mouse orthologous SUOs showed high similarity, even though most detectable TEs in these two genomes inserted after their divergence. Interestingly, our computational analysis of polymerase-II (Pol-II) occupancy at gene promoters in different mouse tissues showed that 60% of tissue-specific SUOs show strong Pol-II binding only in embryonic stem cells (ESCs), a proportion significantly higher than the genomic background (37%). In addition, our analysis of histone marks such as H3K4me3 and H3K27me3 in mouse ESCs also suggest a strong association between TE-rich genes and open-chromatin at promoters. Finally, two independent whole-transcriptome datasets show a positive association between TE density and gene expression level in ESCs. While this study focuses on genes with extreme TE densities, the above results clearly show that the probability of TE accumulation/fixation in mammalian genes is not random and is likely associated with different factors/gene properties and, most importantly, an association between the TE insertion/fixation rate and gene activity status in ES cells
    corecore