10,243 research outputs found

    Benefits of demand-side response in providing frequency response service in the future GB power system

    Get PDF
    The demand for ancillary service is expected to increase significantly in the future Great Britain (GB) electricity system due to high penetration of wind. In particular, the need for frequency response, required to deal with sudden frequency drops following a loss of generator, will increase because of the limited inertia capability of wind plants. This paper quantifies the requirements for primary frequency response and analyses the benefits of frequency response provision from demand-side response (DSR). The results show dramatic changes in frequency response requirements driven by high penetration of wind. Case studies carried out by using an advanced stochastic generation scheduling model suggest that the provision of frequency response from DSR could greatly reduce the system operation cost, wind curtailment, and carbon emissions in the future GB system characterized by high penetration of wind. Furthermore, the results demonstrate that the benefit of DSR shows significant diurnal and seasonal variation, whereas an even more rapid (instant) delivery of frequency response from DSR could provide significant additional value. Our studies also indicate that the competing technologies to DSR, namely battery storage, and more flexible generation could potentially reduce its value by up to 35%, still leaving significant room to deploy DSR as frequency response provider

    Metabolism of ticagrelor in patients with acute coronary syndromes.

    Get PDF
    © The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio

    High pressure effect on structure, electronic structure and thermoelectric properties of MoS2_2

    Full text link
    We systematically study the effect of high pressure on the structure, electronic structure and transport properties of 2H-MoS2_2, based on first-principles density functional calculations and the Boltzmann transport theory. Our calculation shows a vanishing anisotropy in the rate of structural change at around 25 GPa, in agreement with the experimental data. A conversion from van der Waals(vdW) to covalent-like bonding is seen. Concurrently, a transition from semiconductor to metal occurs at 25 GPa from band structure calculation. Our transport calculations also find pressure-enhanced electrical conductivities and significant values of the thermoelectric figure of merit over a wide temperature range. Our study supplies a new route to improve the thermoelectric performance of MoS2_2 and of other transition metal dichalcogenides by applying hydrostatic pressure.Comment: 6 pages, 6 figures; published in JOURNAL OF APPLIED PHYSICS 113, xxxx (2013

    Whole-system assessment of the benefits of integrated electricity and heat system

    Get PDF
    The interaction between electricity and heat systems will play an important role in facilitating the cost effective transition to a low carbon energy system with high penetration of renewable generation. This paper presents a novel integrated electricity and heat system model in which, for the first time, operation and investment timescales are considered while covering both the local district and national level infrastructures. This model is applied to optimize decarbonization strategies of the UK integrated electricity and heat system, while quantifying the benefits of the interactions across the whole multi-energy system, and revealing the trade-offs between portfolios of (a) low carbon generation technologies (renewable energy, nuclear, CCS) and (b) district heating systems based on heat networks (HN) and distributed heating based on end-use heating technologies. Overall, the proposed modeling demonstrates that the integration of the heat and electricity system (when compared with the decoupled approach) can bring significant benefits by increasing the investment in the heating infrastructure in order to enhance the system flexibility that in turn can deliver larger cost savings in the electricity system, thus meeting the carbon target at a lower whole-system cost

    Exploring the Dust Content of Galactic Winds with Herschel. I. NGC 4631

    Get PDF
    We present a detailed analysis of deep far-infrared observations of the nearby edge-on star-forming galaxy NGC 4631 obtained with the Herschel Space Observatory. Our PACS images at 70 and 160 um show a rich complex of filaments and chimney-like features that extends up to a projected distance of 6 kpc above the plane of the galaxy. The PACS features often match extraplanar Halpha, radio-continuum, and soft X-ray features observed in this galaxy, pointing to a tight disk-halo connection regulated by star formation. On the other hand, the morphology of the colder dust component detected on larger scale in the SPIRE 250, 350, and 500 um data matches the extraplanar H~I streams previously reported in NGC 4631 and suggests a tidal origin. The PACS 70/160 ratios are elevated in the central ~3.0 kpc region above the nucleus of this galaxy (the "superbubble"). A pixel-by-pixel analysis shows that dust in this region has a higher temperature and/or an emissivity with a steeper spectral index (beta > 2) than the dust in the disk, possibly the result of the harsher environment in the superbubble. Star formation in the disk seems energetically insufficient to lift the material out of the disk, unless it was more active in the past or the dust-to-gas ratio in the superbubble region is higher than the Galactic value. Some of the dust in the halo may also have been tidally stripped from nearby companions or lifted from the disk by galaxy interactions.Comment: Accepted for publication in The Astrophysical Journa

    Seismic retrofit of RC frames through beam-end weakening in conjunction with FRP strengthening

    Get PDF
    The strong column/weak beam requirement is now widely accepted in the design of reinforced concrete (RC) frames to achieve good seismic performance. However, many existing RC frames violate this requirement as they were designed according to inadequate design codes (generally previous codes). In particular, RC frames designed according to the previous Chinese codes for seismic design are likely to violate this requirement as the contribution of a cast-in-place floor slab in tension is not included in assessing the moment capacity of the beam in negative bending. This paper proposes three promising beam weakening techniques in combination with FRP strengthening to achieve this strong column/weak beam hierarchy and presents the preliminary results of an ongoing study into the effectiveness of and design procedures for the proposed techniques

    An Exploratory Study of Lecturers' Views of Out-of-class Academic Collaboration Among Students

    Full text link
    This article reports an exploratory study of lecturers' perceptions of out-of-class academic collaboration (OCAC) among students at a large Singapore university. Two types of OCAC were investigated: collaboration initiated by students, e.g., groups decide on their own to meet to prepare for exams, and collaboration required by teachers, e.g., teachers assign students to do projects in groups. Data were collected via one-on-one interviews with 18 faculty members from four faculties at the university. Findings suggest that OCAC, especially of a teacher-required kind, is fairly common at the university. Faculty members' views on factors affecting the success of OCAC are discussed for the light they might shed on practices to enhance the effectiveness of OCAC

    Search for Intrinsic Excitations in 152Sm

    Full text link
    The 685 keV excitation energy of the first excited 0+ state in 152Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of 152Sm are used to probe the E2 collectivity of excited 0+ states in this "soft" nucleus and the results are compared with model predictions. No candidates for two-phonon K=0+ quadrupole vibrational states are found. A 2+, K=2 state with strong E2 decay to the first excited K=0+ band and a probable 3+ band member are established.Comment: 4 pages, 6 figures, accepted for publication as a Rapid Communication in Physical Review

    First order magnetic transition in CeFe2_2 alloys: Phase-coexistence and metastability

    Full text link
    First order ferromagnetic (FM) to antiferromagnetic (AFM) phase transition in doped-CeFe2_2 alloys is studied with micro-Hall probe technique. Clear visual evidence of magnetic phase-coexistence on micrometer scales and the evolution of this phase-coexistence as a function of temperature, magnetic field and time across the first order FM-AFM transition is presented. Such phase-coexistence and metastability arise as natural consequence of an intrinsic disorder-influenced first order transition. Generality of this phenomena involving other classes of materials is discussed.Comment: 11 pages of text and 3 figure
    corecore