31 research outputs found
Cardiomyocyte-restricted overexpression of extracellular superoxide dismutase increases nitric oxide bioavailability and reduces infarct size after ischemia/reperfusion
published_or_final_versio
The effect of a preparation of minerals, vitamins and trace elements on the cardiac gene expression pattern in male diabetic rats
BACKGROUND: Diabetic patients have an increased risk of developing cardiovascular diseases, which are the leading cause of death in developed countries. Although multivitamin products are widely used as dietary supplements, the effects of these products have not been investigated in the diabetic heart yet. Therefore, here we investigated if a preparation of different minerals, vitamins, and trace elements (MVT) affects the cardiac gene expression pattern in experimental diabetes. METHODS: Two-day old male Wistar rats were injected with streptozotocin (i.p. 100 mg/kg) or citrate buffer to induce diabetes. From weeks 4 to 12, rats were fed with a vehicle or a MVT preparation. Fasting blood glucose measurement and oral glucose tolerance test were performed at week 12, and then total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41012 oligonucleotides. RESULTS: Significantly elevated fasting blood glucose concentration and impaired glucose tolerance were markedly improved by MVT-treatment in diabetic rats at week 12. Genes with significantly altered expression due to diabetes include functional clusters related to cardiac hypertrophy (e.g. caspase recruitment domain family, member 9; cytochrome P450, family 26, subfamily B, polypeptide; FXYD domain containing ion transport regulator 3), stress response (e.g. metallothionein 1a; metallothionein 2a; interleukin-6 receptor; heme oxygenase (decycling) 1; and glutathione S-transferase, theta 3), and hormones associated with insulin resistance (e.g. resistin; FK506 binding protein 5; galanin/GMAP prepropeptide). Moreover the expression of some other genes with no definite cardiac function was also changed such as e.g. similar to apolipoprotein L2; brain expressed X-linked 1; prostaglandin b2 synthase (brain). MVT-treatment in diabetic rats showed opposite gene expression changes in the cases of 19 genes associated with diabetic cardiomyopathy. In healthy hearts, MVT-treatment resulted in cardiac gene expression changes mostly related to immune response (e.g. complement factor B; complement component 4a; interferon regulatory factor 7; hepcidin). CONCLUSIONS: MVT-treatment improved diagnostic markers of diabetes. This is the first demonstration that MVT-treatment significantly alters cardiac gene expression profile in both control and diabetic rats. Our results and further studies exploring the mechanistic role of individual genes may contribute to the prevention or diagnosis of cardiac complications in diabetes
Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats
BACKGROUND: There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. METHODS: Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein-protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. RESULTS: Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein-protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. CONCLUSIONS: Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM
Expression and function of G-protein-coupled receptorsin the male reproductive tract
This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these receptors in the contraction and regulation of secretion.Esta revisão enfatiza a expressão e a função dos receptores muscarínicos, adrenoceptores α1 e receptores para relaxina no sistema reprodutor masculino. A expressão dos receptores muscarínicos e adrenoceptores α1 em compartimentos específicos de dúctulos eferentes, epidídimo, ductos deferentes, vesícula seminal e próstata de várias espécies indica o envolvimento destes receptores na modulação da composição do fluido luminal e na contração do músculo liso, incluindo efeitos na fertilidade masculina. Além disso, a ativação dos receptores muscarínicos leva à transativação do receptor para o fator crescimento epidermal e proliferação das células de Sertoli. Os receptores para relaxina estão presentes no testículo, RXFP1 nas espermátides alongadas e células de Sertoli de rato e RXFP2 nas células de Leydig e germinativas de ratos e humano, sugerindo o envolvimento destes receptores no processo espermatogênico. A localização de ambos os receptores na porção apical das células epiteliais e no músculo liso dos ductos deferentes de rato sugere um papel na contração e na regulação da secreção.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de FarmacologiaUNIFESP, EPM, Depto. de FarmacologiaSciEL
Knockout of the α1A/C-adrenergic receptor subtype: The α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure
α1-adrenergic receptors (ARs) play a major role in blood pressure regulation. The three α1-AR subtypes (A/C, B, and D) stimulate contraction of isolated arteries, but it is uncertain how different subtypes contribute to blood pressure regulation in the intact animal. We studied the role of the α1A/C subtype by using gene knockout. α1A/C knockout (KO) mice were viable and overtly normal. The LacZ reporter gene replaced α1A/C coding sequence in the KO, and β-galactosidase staining was present in resistance arteries and arterioles, but not in the thoracic aorta or its main branches. By tail cuff manometer and arterial catheter in conscious mice, α1A/C KO mice were hypotensive at rest, with an 8–12% reduction of blood pressure dependent on α1A/C gene copy number. A61603, an α1A/C-selective agonist, caused a pressor response that was lost in the KO and reduced but significant in heterozygous mice with a single copy of the α1A/C. A subtype-nonselective agonist [phenylephrine (PE)] caused a pressor response in KO mice, but the final arterial pressure was only 85% of wild type. The baroreflex was reset in the KO, and heart rate variability was decreased. After baroreflex blockade with atropine, PE increased blood pressure but did not change heart rate. Cardiac and vascular responses to the β-AR agonist isoproterenol were unchanged, and the arterial lumen area was not altered. We conclude that the α1A/C-AR subtype is a vasopressor expressed in resistance arteries and is required for normal arterial blood pressure regulation. α1A/C-selective antagonists might be desirable antihypertensive agents
Cardiomyocyte-restricted overexpression of extracellular superoxide dismutase increases nitric oxide bioavailability and reduces infarct size after ischemia/reperfusion
Abstract Increased levels of extracellular superoxide dismutase (ecSOD) induced by preconditioning or gene therapy protect the heart from ischemia/reperfusion injury. To elucidate the mechanism responsible for this action, we studied the effects of increased superoxide scavenging on nitric oxide (NO) bioavailability in a cardiac myocytespecific ecSOD transgenic (Tg) mouse. Results indicated that ecSOD overexpression increased cardiac myocytespecific ecSOD activity 27.5-fold. Transgenic ecSOD was localized to the sarcolemma and, notably, the cytoplasm of cardiac myocytes. Ischemia/reperfusion injury was attenuated in ecSOD Tg hearts, in which infarct size was decreased and LV functional recovery was improved. Using the ROS spin trap, DMPO, electron paramagnetic resonance (EPR) spectroscopy demonstrated a significant decrease in ROS in Tg hearts during the first 20 min of reperfusion. This decrease in ROS was accompanied by an increase in NO production determined by EPR using the NO spin trap, Fe-MGD. Attenuated ROS in ecSOD Tg myocytes was also supported by decreased production of peroxynitrite (ONOO -). Increased NO bioavailability was confirmed by attenuated guanylate cyclase-dependent (p-VASP) signaling. In conclusion, attenuation of ROS levels by cardiac-specific ecSOD overexpression increases NO bioavailability in response to ischemia/reperfusion and protects against reperfusion injury. These findings are the first to demonstrate increased NO bioavailability with attenuation of ROS by direct measurement of these reactive species (EPR, reactive fluorescent dyes) with cardiac-specific ecSOD expression. This is also the first indication that the predominantly extracellular SOD isoform is capable of cytosolic localization that affects myocardial intracellular signal transduction and function