676 research outputs found

    Fluctuations for the Ginzburg-Landau ϕ\nabla \phi Interface Model on a Bounded Domain

    Full text link
    We study the massless field on Dn=D1nZ2D_n = D \cap \tfrac{1}{n} \Z^2, where DR2D \subseteq \R^2 is a bounded domain with smooth boundary, with Hamiltonian \CH(h) = \sum_{x \sim y} \CV(h(x) - h(y)). The interaction \CV is assumed to be symmetric and uniformly convex. This is a general model for a (2+1)(2+1)-dimensional effective interface where hh represents the height. We take our boundary conditions to be a continuous perturbation of a macroscopic tilt: h(x)=nxu+f(x)h(x) = n x \cdot u + f(x) for xDnx \in \partial D_n, uR2u \in \R^2, and f ⁣:R2Rf \colon \R^2 \to \R continuous. We prove that the fluctuations of linear functionals of h(x)h(x) about the tilt converge in the limit to a Gaussian free field on DD, the standard Gaussian with respect to the weighted Dirichlet inner product (f,g)β=Diβiifiigi(f,g)_\nabla^\beta = \int_D \sum_i \beta_i \partial_i f_i \partial_i g_i for some explicit β=β(u)\beta = \beta(u). In a subsequent article, we will employ the tools developed here to resolve a conjecture of Sheffield that the zero contour lines of hh are asymptotically described by SLE(4)SLE(4), a conformally invariant random curve.Comment: 58 page

    Isoscalar monopole excitations in 16^{16}O: α\alpha-cluster states at low energy and mean-field-type states at higher energy

    Full text link
    Isoscalar monopole strength function in 16^{16}O up to Ex40E_{x}\simeq40 MeV is discussed. We found that the fine structures at the low energy region up to Ex16E_{x} \simeq 16 MeV in the experimental monopole strength function obtained by the 16^{16}O(α,α)(\alpha,\alpha^{\prime}) reaction can be rather satisfactorily reproduced within the framework of the 4α4\alpha cluster model, while the gross three bump structures observed at the higher energy region (16Ex4016 \lesssim E_{x} \lesssim 40 MeV) look likely to be approximately reconciled by the mean-field calculations such as RPA and QRPA. In this paper, it is emphasized that two different types of monopole excitations exist in 16^{16}O; one is the monopole excitation to cluster states which is dominant in the lower energy part (Ex16E_{x} \lesssim 16 MeV), and the other is the monopole excitation of the mean-field type such as one-particle one-hole (1p1h1p1h) which {is attributed} mainly to the higher energy part (16Ex4016 \lesssim E_{x} \lesssim 40 MeV). It is found that this character of the monopole excitations originates from the fact that the ground state of 16^{16}O with the dominant doubly closed shell structure has a duality of the mean-field-type {as well as} α\alpha-clustering {character}. This dual nature of the ground state seems to be a common feature in light nuclei.Comment: 35 pages, 5 figure

    Concepts of alpha-particle condensation

    Full text link
    Certain aspects of the recently proposed antisymmetrised alpha particle product state wave function, or THSR alpha cluster wave function, for the description of the ground state in 8Be, the Hoyle state in 12C, and analogous states in heavier nuclei, are elaborated in detail. For instance, the influence of antisymmetrisation in the Hoyle state on the bosonic character of the alpha particles is studied carefully. It is shown to be weak, so that bosonic aspects are predominant. The de Broglie wave length of alpha particles in the Hoyle state is shown to be much larger than the inter-alpha distance. It is pointed out that the bosonic features of low density alpha gas states have measurable consequences, one of which, that is enhanced multi-alpha decay properties, likely already have been detected. Consistent with experiment, the width of the proposed analogue to the Hoyle state in 16O at the excitation energy of E_x=15.1 MeV is estimated to be very small (34 keV), lending credit to the existence of heavier Hoyle-like states. The intrinsic single boson density matrix of a self-bound Bose system can, under physically desirable boundary conditions, be defined unambiguously. One eigenvalue then separates out, being close to the number of alpha's in the system. Differences between Brink and THSR alpha cluster wave functions are worked out. No cluster model of the Brink type can describe the Hoyle state with a single configuration. On the contrary, many superpositions of the Brink type are necessary, implying delocalisation towards an alpha product state. It is shown that single alpha particle orbits in condensates of different nuclei are almost the same. It is thus argued that alpha particle antisymmetrised product states of the THSR type are a very promising novel and useful concept in nuclear physics.Comment: 16 pages, 14 figures, to appear in PR

    Dilute Multi Alpha Cluster States in Nuclei

    Full text link
    Dilute multi α\alpha cluster condensed states with spherical and axially deformed shapes are studied with the Gross-Pitaevskii equation and Hill-Wheeler equation, where the α\alpha cluster is treated as a structureless boson. Applications to self-conjugate 4N4N nuclei show that the dilute NαN\alpha states of 12^{12}C to 40^{40}Ca with Jπ=0+J^\pi=0^+ appear in the energy region from threshold up to about 20 MeV, and the critical number of α\alpha bosons that the dilute NαN\alpha system can sustain as a self-bound nucleus is estimated roughly to be Ncr10N_{cr}\sim10. We discuss the characteristics of the dilute NαN\alpha states with emphasis on the NN dependence of their energies and rms radii.Comment: 44 pages, 8 figure

    On the exclusion of intra-cluster plasma from AGN-blown bubbles

    Full text link
    Simple arguments suggest that magnetic fields should be aligned tangentially to the surface of an AGN-blown bubble. If this is the case, charged particles from the fully ionised intra-cluster medium (ICM) will be prevented, ordinarily, from crossing the boundary by the Lorentz force. However, recent observations indicate that thermal material may occupy up to 50% of the volume of some bubbles. Given the effect of the Lorentz force, the thermal content must then be attributed to one, or a combination, of the following processes: i) the entrainment of thermal gas into the AGN outflow that inflated the bubble; ii) rapid diffusion across the magnetic field lines at the ICM/bubble interface; iii) magnetic reconnection events which transfer thermal material across the ICM/bubble boundary. Unless the AGN outflow behaves as a magnetic tower jet, entrainment may be significant and could explain the observed thermal content of bubbles. Alternatively, the cross-field diffusion coefficient required for the ICM to fill a typical bubble is roughly 10^16 cm^2 s^-1, which is anomalously high compared to predictions from turbulent diffusion models. Finally, the mass transfer rate due to magnetic reconnection is uncertain, but significant for plausible reconnection rates. We conclude that entrainment into the outflow and mass transfer due to magnetic reconnection events are probably the most significant sources of thermal content in AGN-blown bubbles.Comment: Accepted for publication in MNRAS, 8 pages, 1 figur

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9

    From the stable to the exotic: clustering in light nuclei

    Full text link
    A great deal of research work has been undertaken in alpha-clustering study since the pioneering discovery of 12C+12C molecular resonances half a century ago. Our knowledge on physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of the superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Evolution of clustering from stability to the drip-lines is examined: clustering aspects are, in particular, discussed for light exotic nuclei with large neutron excess such as neutron-rich Oxygen isotopes with their complete spectroscopy.Comment: 15 pages, 5 figures, Presented at the International Symposium on "New Horizons in Fundamental Physics - From Neutrons Nuclei via Superheavy Elements and Supercritical Fields to Neutron Stars and Cosmic Rays" held at Makutsi Safari Farm, South Africa, December 23-29, 2015. arXiv admin note: substantial text overlap with arXiv:1402.6590, arXiv:1303.0960, arXiv:1408.0684, arXiv:1011.342

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example
    corecore