1,843 research outputs found
Parametric studies of cosmic ray acceleration in supernova remnants
We present a library of numerical models of cosmic-ray accelerating supernova
remnants (SNRs) evolving through a homogeneous ambient medium. We analyse
distributions of the different energy components and diffusive shock
acceleration time-scales for the models in various conditions. The library
comprises a variety of SNR evolutionary scenarios and is used to map remnants
with sufficiently known properties. This mapping constrains the respective
ambient medium properties and the acceleration efficiency. Employing the
library, we derive the ambient medium density, ambient magnetic field strength
and the cosmic-ray acceleration efficiency for models of Tycho and SN 1006
remnants and refine the ages of SNR 0509-67.5 and SNR 0519-69.0.Comment: 13 pages, 9 figures, MNRAS accepte
A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell
A fluorescence correlation spectroscopy (FCS) system based on two independent
measurement volumes is presented. The optical setup and data acquisition
hardware are detailed, as well as a complete protocol to control the location,
size and shape of the measurement volumes. A method that allows to monitor
independently the excitation and collection efficiency distribution is
proposed. Finally, a few examples of measurements that exploit the two spots in
static and/or scanning schemes, are reported.Comment: Accepted for publication in Review of Scientific Instrumen
Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom
The emission spectra of individual self-assembled quantum dots containing a
single magnetic Mn atom differ strongly from dot to dot. The differences are
explained by the influence of the system geometry, specifically the in-plane
asymmetry of the quantum dot and the position of the Mn atom. Depending on both
these parameters, one has different characteristic emission features which
either reveal or hide the spin state of the magnetic atom. The observed
behavior in both zero field and under magnetic field can be explained
quantitatively by the interplay between the exciton-manganese exchange
interaction (dependent on the Mn position) and the anisotropic part of the
electron-hole exchange interaction (related to the asymmetry of the quantum
dot).Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
Discrete complex analysis on planar quad-graphs
We develop a linear theory of discrete complex analysis on general
quad-graphs, continuing and extending previous work of Duffin, Mercat, Kenyon,
Chelkak and Smirnov on discrete complex analysis on rhombic quad-graphs. Our
approach based on the medial graph yields more instructive proofs of discrete
analogs of several classical theorems and even new results. We provide discrete
counterparts of fundamental concepts in complex analysis such as holomorphic
functions, derivatives, the Laplacian, and exterior calculus. Also, we discuss
discrete versions of important basic theorems such as Green's identities and
Cauchy's integral formulae. For the first time, we discretize Green's first
identity and Cauchy's integral formula for the derivative of a holomorphic
function. In this paper, we focus on planar quad-graphs, but we would like to
mention that many notions and theorems can be adapted to discrete Riemann
surfaces in a straightforward way.
In the case of planar parallelogram-graphs with bounded interior angles and
bounded ratio of side lengths, we construct a discrete Green's function and
discrete Cauchy's kernels with asymptotics comparable to the smooth case.
Further restricting to the integer lattice of a two-dimensional skew coordinate
system yields appropriate discrete Cauchy's integral formulae for higher order
derivatives.Comment: 49 pages, 8 figure
The social fabric of Jeans': Assessing the social: Coupling social simulation and assessment methods
International audienceThe culture and manufacturing of the cotton fabric used to make your Jeans’ may have implied the use of fertilizers or pesticides polluting a water basin, have led to relocating people and even of children labour at different stages of its fabrication. As a consumer you probably didn’t take all these consequences into account (for your sake most of the information is not available, or value-wise you feel unconcerned) and you surely preferred to buy the cheapest one or to follow the fashion trend. Basically, every economic or public activity has repercussions directly, or through a chain of consequences on the environment and the society. In order to try and measure those impacts, or to valuate one choice (Jeans’ L) compared to another (Jeans’ P&J), several assessment methods have been developed and are frequently used. As a self-evident truth, assessment methods are instruments used to evaluate something. These could include measuring a performance on a specific case. In terms of evaluating policies and strategies, their possible outcomes are intended to evaluate their potential impacts. This refers to impact assessment in which past (already implemented actions) or future (ex-ante analysis) performances are studied
Microphotoluminescence study of disorder in ferromagnetic (Cd,Mn)Te quantum well
Microphotoluminescence mapping experiments were performed on a modulation
doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The
zero field splitting that reveals the presence of a spontaneous magnetization
in the low-temperature phase, is measured locally; its fluctuations are
compared to those of the spin content and of the carrier density, also measured
spectroscopically in the same run. We show that the fluctuations of the carrier
density are the main mechanism responsible for the fluctuations of the
spontaneous magnetization in the ferromagnetic phase, while those of the Mn
spin density have no detectable effect at this scale of observation.Comment: 4 pages, 3 figure
Carrier-induced ferromagnetism in p-Zn1-xMnxTe
We present a systematic study of the ferromagnetic transition induced by the
holes in nitrogen doped Zn1-xMnxTe epitaxial layers, with particular emphasis
on the values of the Curie-Weiss temperature as a function of the carrier and
spin concentrations. The data are obtained from thorough analyses of the
results of magnetization, magnetoresistance and spin-dependent Hall effect
measurements. The experimental findings compare favorably, without adjustable
parameters, with the prediction of the Rudermann-Kittel-Kasuya-Yosida (RKKY)
model or its continuous-medium limit, that is, the Zener model, provided that
the presence of the competing antiferromagnetic spin-spin superexchange
interaction is taken into account, and the complex structure of the valence
band is properly incorporated into the calculation of the spin susceptibility
of the hole liquid. In general terms, the findings demonstrate how the
interplay between the ferromagnetic RKKY interaction, carrier localization, and
intrinsic antiferromagnetic superexchange affects the ordering temperature and
the saturation value of magnetization in magnetically and electrostatically
disordered systems.Comment: 14 pages, 10 figure
WAT-A-GAME: sharing water and policies in your own basin
40th Annual Conference, Int. Simulation And Gaming Association, Singapour, SGP, 29-/06/2009 - 03/07/2009International audienceAfter having designed and used various games for learning and supporting water management and governance, many similarities appear. However, the components, topologies, and social and political setting of the basins are different. Therefore we have started designing andvalidating a new generic game platform, WAT-A-GAME, alias AMANZI. This new game aims at facilitating exploration and transformation of water management and water use at the small catchment scale. It gives a simple but enlightening view of the various consequences of individual and collective choices, including regulation policies. After comparing it with some previous games, we discuss its main rationales and features. We show how it can be adapted to very different settings, how players can usefully contribute to designing an instance, and how it can especially address dialogue between multi-level stakeholders. We describe an application in South-Africa, in the Inkomati basin and the preliminary results of this instance
Approximation of conformal mappings using conformally equivalent triangular lattices
Consider discrete conformal maps defined on the basis of two conformally
equivalent triangle meshes, that is edge lengths are related by scale factors
associated to the vertices. Given a smooth conformal map , we show that it
can be approximated by such discrete conformal maps . In
particular, let be an infinite regular triangulation of the plane with
congruent triangles and only acute angles (i.e.\ ). We scale this
tiling by and approximate a compact subset of the domain of
with a portion of it. For small enough we prove that there exists a
conformally equivalent triangle mesh whose scale factors are given by
on the boundary. Furthermore we show that the corresponding discrete
conformal maps converge to uniformly in with error of
order .Comment: 14 pages, 3 figures; v2 typos corrected, revised introduction, some
proofs extende
- …
