595 research outputs found

    The Sound of Sonoluminescence

    Full text link
    We consider an air bubble in water under conditions of single bubble sonoluminescence (SBSL) and evaluate the emitted sound field nonperturbatively for subsonic gas-liquid interface motion. Sound emission being the dominant damping mechanism, we also implement the nonperturbative sound damping in the Rayleigh-Plesset equation for the interface motion. We evaluate numerically the sound pulse emitted during bubble collapse and compare the nonperturbative and perturbative results, showing that the usual perturbative description leads to an overestimate of the maximal surface velocity and maximal sound pressure. The radius vs. time relation for a full SBSL cycle remains deceptively unaffected.Comment: 25 pages; LaTex and 6 attached ps figure files. Accepted for publication in Physical Review

    Designing Robust Unitary Gates: Application to Concatenated Composite Pulse

    Full text link
    We propose a simple formalism to design unitary gates robust against given systematic errors. This formalism generalizes our previous observation [Y. Kondo and M. Bando, J. Phys. Soc. Jpn. 80, 054002 (2011)] that vanishing dynamical phase in some composite gates is essential to suppress amplitude errors. By employing our formalism, we naturally derive a new composite unitary gate which can be seen as a concatenation of two known composite unitary operations. The obtained unitary gate has high fidelity over a wider range of the error strengths compared to existing composite gates.Comment: 7 pages, 4 figures. Major revision: improved presentation in Sec. 3, references and appendix adde

    Quantum Stabilizer Codes Embedding Qubits Into Qudits

    Full text link
    We study, by means of the stabilizer formalism, a quantum error correcting code which is alternative to the standard block codes since it embeds a qubit into a qudit. The code exploits the non-commutative geometry of discrete phase space to protect the qubit against both amplitude and phase errors. The performance of such code is evaluated on Weyl channels by means of the entanglement fidelity as function of the error probability. A comparison with standard block codes, like five and seven qubit stabilizer codes, shows its superiority.Comment: 15 pages, 2 figures (improved version); accepted for publication in Phys. Rev.

    Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    Full text link
    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a "pearl-necklace encoder." Despite their theoretical significance as a neat way of representing quantum convolutional codes, they are not well-suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm for finding a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work extends our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the non-commutative paths through the pearl-necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.Comment: 16 pages, 5 figures; extends paper arXiv:1004.5179v

    Comment on "Transverse Force on a Quantized Vortex in a Superfluid"

    Full text link
    The result of Thouless, Ao and Niu (TAN), that the mutual friction parameter d=0d_\perp =0, contradicts to the experiments made in rotating 3He-B by Manchester group. The Manchester group observed that d<0d_\perp <0 at low temperature and approaches 1 at high temperature. The reason of the contradiction is that TAN did not take into account the Iordanskii force on the vortex and the spectral flow force, which comes from the anomaly related to the low-energy bound states of fermions in cores of quantized vortices. The Iordanskii force is responsible for the negative d<0d_\perp <0 at low temperature, while due to the spectral flow dd_\perp approaches 1 at high temperature. Relation of the spectral flow anomaly with the paradoxes of the linear and angular momenta in gapless superfluids is discussed.Comment: revtex, 2 pages, submitted to Physical Review Letters as "Comment" to the paper D.J. Thouless, P. Ao and Q. Niu, Phys. Rev. Lett. 76, 3758 (1996

    Quantum error correction : an introductory guide

    Get PDF
    Quantum error correction protocols will play a central role in the realisation of quantum computing; the choice of error correction code will influence the full quantum computing stack, from the layout of qubits at the physical level to gate compilation strategies at the software level. As such, familiarity with quantum coding is an essential prerequisite for the understanding of current and future quantum computing architectures. In this review, we provide an introductory guide to the theory and implementation of quantum error correction codes. Where possible, fundamental concepts are described using the simplest examples of detection and correction codes, the working of which can be verified by hand. We outline the construction and operation of the surface code, the most widely pursued error correction protocol for experiment. Finally, we discuss issues that arise in the practical implementation of the surface code and other quantum error correction codes

    Edge Tunneling of Vortices in Superconducting Thin Films

    Full text link
    We investigate the phenomenon of the decay of a supercurrent due to the zero-temperature quantum tunneling of vortices from the edge in a thin superconducting film in the absence of an external magnetic field. An explicit formula is derived for the tunneling rate of vortices, which are subject to the Magnus force induced by the supercurrent, through the Coulomb-like potential barrier binding them to the film's edge. Our approach ensues from the non-relativistic version of a Schwinger-type calculation for the decay of the 2D vacuum previously employed for describing vortex-antivortex pair-nucleation in the bulk of the sample. In the dissipation-dominated limit, our explicit edge-tunneling formula yields numerical estimates which are compared with those obtained for bulk-nucleation to show that both mechanisms are possible for the decay of a supercurrent.Comment: REVTeX file, 15 pages, 1 Postscript figure; to appear in Phys.Rev.

    Effects of Noise, Correlations and errors in the preparation of initial states in Quantum Simulations

    Full text link
    In principle a quantum system could be used to simulate another quantum system. The purpose of such a simulation would be to obtain information about problems which cannot be simulated with a classical computer due to the exponential increase of the Hilbert space with the size of the system and which cannot be measured or controlled in an actual experiment. The system will interact with the surrounding environment, with the other particles in the system and be implemented using imperfect controls making it subject to noise. It has been suggested that noise does not need to be controlled to the same extent as it must be for general quantum computing. However the effects of noise in quantum simulations and how to treat them are not completely understood. In this paper we study an existing quantum algorithm for the one-dimensional Fano-Anderson model to be simulated using a liquid-state NMR device. We calculate the evolution of different initial states in the original model, and then we add interacting spins to simulate a more realistic situation. We find that states which are entangled with their environment, and sometimes correlated but not necessarily entangled have an evolution which is described by maps which are not completely positive. We discuss the conditions for this to occur and also the implications.Comment: Revtex 4-1, 14 pages, 21 figures, version 2 has typos corrected and acknowledgement adde

    A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts

    Get PDF
    � 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow-down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell-size and fermentation versatility). We found that speciation rates are constant during the time-range we considered (ca., 150�millions of years). Phylogenetic signal of both traits was significant (but lower for cell-size), suggesting that lineages resemble each other in trait-values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell-size. We also found a significant phylogenetic regression between cell-size and fermentation versatility (R 2 �=�0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common-garden conditions combined with comparative analyses are warranted.Link_to_subscribed_fulltex

    Berry's Phase in the Presence of a Stochastically Evolving Environment: A Geometric Mechanism for Energy-Level Broadening

    Get PDF
    The generic Berry phase scenario in which a two-level system is coupled to a second system whose dynamical coordinate is slowly-varying is generalized to allow for stochastic evolution of the slow system. The stochastic behavior is produced by coupling the slow system to a heat resevoir which is modeled by a bath of harmonic oscillators initially in equilibrium at temperature T, and whose spectral density has a bandwidth which is small compared to the energy-level spacing of the fast system. The well-known energy-level shifts produced by Berry's phase in the fast system, in conjunction with the stochastic motion of the slow system, leads to a broadening of the fast system energy-levels. In the limit of strong damping and sufficiently low temperature, we determine the degree of level-broadening analytically, and show that the slow system dynamics satisfies a Langevin equation in which Lorentz-like and electric-like forces appear as a consequence of geometrical effects. We also determine the average energy-level shift produced in the fast system by this mechanism.Comment: 29 pages, RevTex, submitted to Phys. Rev.
    corecore