229 research outputs found

    Variation rs2235503 C > A Within the Promoter of MSLN Affects Transcriptional Rate of Mesothelin and Plasmatic Levels of the Soluble Mesothelin-Related Peptide

    Get PDF
    Soluble mesothelin-related peptide (SMRP) is a promising biomarker for malignant pleural mesothelioma (MPM), but several confounding factors can reduce SMRP-based test’s accuracy. The identification of these confounders could improve the diagnostic performance of SMRP. In this study, we evaluated the sequence of 1,000 base pairs encompassing the minimal promoter region of the MSLN gene to identify expression quantitative trait loci (eQTL) that can affect SMRP. We assessed the association between four MSLN promoter variants and SMRP levels in a cohort of 72 MPM and 677 non-MPM subjects, and we carried out in vitro assays to investigate their functional role. Our results show that rs2235503 is an eQTL for MSLN associated with increased levels of SMRP in non-MPM subjects. Furthermore, we show that this polymorphic site affects the accuracy of SMRP, highlighting the importance of evaluating the individual’s genetic background and giving novel insights to refine SMRP specificity as a diagnostic biomarker

    A new phase in the production of quality-controlled sea level data

    Get PDF
    Sea level is an essential climate variable (ECV) that has a direct effect on many people through inundations of coastal areas, and it is also a clear indicator of climate changes due to external forcing factors and internal climate variability. Regional patterns of sea level change inform us on ocean circulation variations in response to natural climate modes such as El Niño and the Pacific Decadal Oscillation, and anthropogenic forcing. Comparing numerical climate models to a consistent set of observations enables us to assess the performance of these models and help us to understand and predict these phenomena, and thereby alleviate some of the environmental conditions associated with them. All such studies rely on the existence of long-term consistent high-accuracy datasets of sea level. The Climate Change Initiative (CCI) of the European Space Agency was established in 2010 to provide improved time series of some ECVs, including sea level, with the purpose of providing such data openly to all to enable the widest possible utilisation of such data. Now in its second phase, the Sea Level CCI project (SL_cci) merges data from nine different altimeter missions in a clear, consistent and well-documented manner, selecting the most appropriate satellite orbits and geophysical corrections in order to further reduce the error budget. This paper summarises the corrections required, the provenance of corrections and the evaluation of options that have been adopted for the recently released v2.0 dataset (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612). This information enables scientists and other users to clearly understand which corrections have been applied and their effects on the sea level dataset. The overall result of these changes is that the rate of rise of global mean sea level (GMSL) still equates to ∼ 3.2 mm yr−1 during 1992–2015, but there is now greater confidence in this result as the errors associated with several of the corrections have been reduced. Compared with v1.1 of the SL_cci dataset, the new rate of change is 0.2 mm yr−1 less during 1993 to 2001 and 0.2 mm yr−1 higher during 2002 to 2014. Application of new correction models brought a reduction of altimeter crossover variances for most corrections

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Increased Terpenoid Accumulation in Cotton (Gossypium hirsutum) Foliage is a General Wound Response

    Get PDF
    The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid

    Decomposers and root feeders interactively affect plant defence in Sinapis alba

    Get PDF
    Aboveground herbivory is well known to change plant growth and defence. In contrast, effects of soil organisms, acting alone or in concert, on allocation patterns are less well understood. We investigated separate and combined effects of the endogeic earthworm species Aporrectodea caliginosa and the root feeding nematode species Pratylenchus penetrans and Meloidogyne incognita on plant responses including growth and defence metabolite concentrations in leaves of white mustard, Sinapis alba. Soil biota had a strong impact on plant traits, with the intensity varying due to species combinations. Nematode infestation reduced shoot biomass and nitrogen concentration but only in the absence of earthworms. Earthworms likely counteracted the negative effects of nematodes. Infestation with the migratory lesion-nematode P. penetrans combined with earthworms led to increased root length. Earthworm biomass increased in the presence of this species, indicating that these nematodes increased the food resources of earthworms—presumably dead and decaying roots. Nitrogen-based defence compounds, i.e. glucosinolates, did not correlate with nitrogen levels. In the presence of earthworms, concentrations of aromatic glucosinolates in leaves were significantly increased. In contrast, infection with P. penetrans strongly decreased concentrations of glucosinolates (up to 81%). Infestation with the sedentary nematode M. incognita induced aromatic glucosinolates by more than 50% but only when earthworms were also present. Myrosinase activities, glucosinolate-hydrolysing enzymes, were unaffected by nematodes but reduced in the presence of earthworms. Our results document that root-feeding nematodes elicit systemic plant responses in defence metabolites, with the responses varying drastically with nematode species of different functional groups. Furthermore, systemic plant responses are also altered by decomposer animals, such as earthworms, challenging the assumption that induction of plant responses including defence traits is restricted to herbivores. Soil animals even interact and modulate the individual effects on plant growth and plant defence, thereby likely also influencing shoot herbivore attack

    Tollip Is a Mediator of Protein Sumoylation

    Get PDF
    Tollip is an interactor of the interleukin-1 receptor involved in its activation. The endosomal turnover of ubiquitylated IL-1RI is also controlled by Tollip. Furthermore, together with Tom1, Tollip has a general role in endosomal protein traffic. This work shows that Tollip is involved in the sumoylation process. Using the yeast two-hybrid technique, we have isolated new Tollip partners including two sumoylation enzymes, SUMO-1 and the transcriptional repressor Daxx. The interactions were confirmed by GST-pull down experiments and immunoprecipitation of the co-expressed recombinants. More specifically, we show that the TIR domain of the cytoplasmic region of IL-1RI is a sumoylation target of Tollip. The sumoylated and unsumoylated RanGAP-1 protein also interacts with Tollip, suggesting a possible role in RanGAP-1 modification and nuclear-cytoplasmic protein translocation. In fact, Tollip is found in the nuclear bodies of SAOS-2/IL-1RI cells where it colocalizes with SUMO-1 and the Daxx repressor. We conclude that Tollip is involved in the control of both nuclear and cytoplasmic protein traffic, through two different and often contrasting processes: ubiquitylation and sumoylation

    A role of BRCA1 and BRCA2 germline mutations in breast cancer susceptibility within Sardinian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, numerous studies have assessed the prevalence of germline mutations in <it>BRCA1 </it>and <it>BRCA2 </it>genes in various cohorts. We here extensively investigated the prevalence and geographical distribution of <it>BRCA1-2 </it>mutations in the entire genetically-homogeneous Sardinian population. The occurrence of phenotypic characteristics which may be predictive for the presence of <it>BRCA1-2 </it>germline mutations was also evaluated.</p> <p>Methods</p> <p>Three hundred and forty-eight breast cancer patients presenting a familial recurrence of invasive breast or ovarian carcinoma with at least two affected family members were screened for <it>BRCA1-2 </it>mutations by DHPLC analysis and DNA sequencing. Association of <it>BRCA1 </it>and <it>BRCA2 </it>mutational status with clinical and pathological parameters was evaluated by Pearson's Chi-Squared test.</p> <p>Results and Conclusion</p> <p>Overall, 8 <it>BRCA1 </it>and 5 <it>BRCA2 </it>deleterious mutations were detected in 35/348 (10%) families; majority (23/35;66%) of mutations was found in <it>BRCA2 </it>gene. The geographical distribution of <it>BRCA1-2 </it>mutations was related to three specific large areas of Sardinia, reflecting its ancient history: <it>a</it>) the Northern area, linguistically different from the rest of the island (where a <it>BRCA2 c.8764_8765delAG </it>mutation with founder effect was predominant); <it>b</it>) the Middle area, land of the ancient Sardinian population (where <it>BRCA2 </it>mutations are still more common than <it>BRCA1 </it>mutations); and <it>c</it>) the South-Western area, with many Phoenician and Carthaginian locations (where <it>BRCA1 </it>mutations are prevalent). We also found that phenotypic features such as high tumor grading and lack of expression of estrogen/progesterone receptors together with age at diagnosis and presence of ovarian cancer in the family may be predictive for the presence of <it>BRCA1-2 </it>germline mutations.</p
    corecore