2,129 research outputs found

    Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses

    Get PDF
    The technological possibilities of a realistic eavesdropper are discussed. Two eavesdropping strategies taking profit of multiphoton pulses in faint laser QKD are presented. We conclude that, as long as storage of Qubits is technically impossible, faint laser QKD is not limited by this security issue, but mostly by the detector noise.Comment: 7 pages, 6 figure

    First-order sidebands in circuit QED using qubit frequency modulation

    Full text link
    Sideband transitions have been shown to generate controllable interaction between superconducting qubits and microwave resonators. Up to now, these transitions have been implemented with voltage drives on the qubit or the resonator, with the significant disadvantage that such implementations only lead to second-order sideband transitions. Here we propose an approach to achieve first-order sideband transitions by relying on controlled oscillations of the qubit frequency using a flux-bias line. Not only can first-order transitions be significantly faster, but the same technique can be employed to implement other tunable qubit-resonator and qubit-qubit interactions. We discuss in detail how such first-order sideband transitions can be used to implement a high fidelity controlled-NOT operation between two transmons coupled to the same resonator.Comment: 15 pages, 5 figure

    Unconditional security at a low cost

    Get PDF
    By simulating four quantum key distribution (QKD) experiments and analyzing one decoy-state QKD experiment, we compare two data post-processing schemes based on security against individual attack by L\"{u}tkenhaus, and unconditional security analysis by Gottesman-Lo-L\"{u}tkenhaus-Preskill. Our results show that these two schemes yield close performances. Since the Holy Grail of QKD is its unconditional security, we conclude that one is better off considering unconditional security, rather than restricting to individual attacks.Comment: Accepted by International Conference on Quantum Foundation and Technology: Frontier and Future 2006 (ICQFT'06

    The diamagnetism above the superconducting transition in underdoped La(1.9)Sr(0.1)CuO(4) revisited: Chemical disorder or phase incoherent superconductivity?

    Full text link
    The interplay between superconducting fluctuations and inhomogeneities presents a renewed interest due to recent works supporting an anomalous [beyond the conventional Gaussian-Ginzburg-Landau (GGL) scenario] diamagnetism above Tc in underdoped cuprates. This conclusion, mainly based in the observation of new anomalies in the low-field isothermal magnetization curves, is in contradiction with our earlier results in the underdoped La(1.9)Sr(0.1)CuO(4) [Phys. Rev. Lett. 84, 3157 (2000)]. These seemingly intrinsic anomalies are being presented in various influential works as a 'thermodynamic evidence' for phase incoherent superconductivity in the pseudogap regime, this last being at present a central and debated issue of the cuprate superconductors' physics. Here we have extended our magnetization measurements in La(1.9)Sr(0.1)CuO(4) to two samples with different chemical disorder, in one of them close to the one associated with the random distribution of Sr ions. For this sample, the corresponding Tc-distribution may be approximated as symmetric around the average Tc, while in the most disordered sample is strongly asymmetric. The comparison between the magnetization measured in both samples provides a crucial check of the chemical disorder origin of the observed diamagnetism anomalies, which are similar to those claimed as due to phase fluctuations by other authors. This conclusion applies also to the sample affected only by the intrinsic-like chemical disorder, providing then a further check that the intrinsic diamagnetism above the superconducting transition of underdoped cuprates is not affected by the opening of a pseudogap in the normal state. It is also shown here that once these disorder effects are overcome, the remaining precursor diamagnetism may be accounted at a quantitative level in terms of the GGL approach under a total energy cutoff.Comment: 13 pages, 7 figures. Minor corrections include

    Photon-Number-Splitting versus Cloning Attacks in Practical Implementations of the Bennett-Brassard 1984 protocol for Quantum Cryptography

    Full text link
    In practical quantum cryptography, the source sometimes produces multi-photon pulses, thus enabling the eavesdropper Eve to perform the powerful photon-number-splitting (PNS) attack. Recently, it was shown by Curty and Lutkenhaus [Phys. Rev. A 69, 042321 (2004)] that the PNS attack is not always the optimal attack when two photons are present: if errors are present in the correlations Alice-Bob and if Eve cannot modify Bob's detection efficiency, Eve gains a larger amount of information using another attack based on a 2->3 cloning machine. In this work, we extend this analysis to all distances Alice-Bob. We identify a new incoherent 2->3 cloning attack which performs better than those described before. Using it, we confirm that, in the presence of errors, Eve's better strategy uses 2->3 cloning attacks instead of the PNS. However, this improvement is very small for the implementations of the Bennett-Brassard 1984 (BB84) protocol. Thus, the existence of these new attacks is conceptually interesting but basically does not change the value of the security parameters of BB84. The main results are valid both for Poissonian and sub-Poissonian sources.Comment: 11 pages, 5 figures; "intuitive" formula (31) adde

    Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    Get PDF
    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.Fil: Avilés Félix, L.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Butera, Alejandro Ricardo. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: González Chávez, D. E.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Sommer, R. L.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Gomez, Javier Enrique. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentin

    Virología, epidemiología y mecanismos de transmisión del VHB

    Get PDF
    Illness due to the hepatitis B virus is an enormous problem for international public health, affecting over 300 million persons throughout the world, although its prevalence varies considerably between different geographic areas. The universal vaccination of the newly born, promulgated by the World Health Organisation, has made it possible to partially control the spread of the virus in many countries, including Spain. However, the vaccine does not generate protective antibodies in approximately 5% of the population. Besides, infection by the hepatitis B virus can produce few symptoms and the virus is easily transmitted, making its epidemiological control difficult. On the other hand, the growing flow of bi-directional migration of persons between geographical areas with a moderate or high prevalence and Spain also seems to be contributing to the persistence of the disease in our milieu. All of this makes it compulsory to deploy an ensemble of preventive measures based on an increasingly deep understanding of the biological cycle of the virus. In Spain, as in other regions with a low prevalence, the hepatitis B virus infection is considered chiefly to be a disease of sexual transmission, or else contagion takes place between patients who are users of intravenous drugs. On the other hand, blood transmission is of scarce importance in our milieu. Following exposure to the hepatitis B virus, prophylaxis with immunoglobins and also the administration of the vaccine is highly effective, and acquires special interest for all healthcare workers

    Intercept-resend attacks in the Bennett-Brassard 1984 quantum key distribution protocol with weak coherent pulses

    Full text link
    Unconditional security proofs of the Bennett-Brassard protocol of quantum key distribution have been obtained recently. These proofs cover also practical implementations that utilize weak coherent pulses in the four signal polarizations. Proven secure rates leave open the possibility that new proofs or new public discussion protocols obtain larger rates over increased distance. In this paper we investigate limits to error rate and signal losses that can be tolerated by future protocols and proofs.Comment: 11 pages, 3 figures. Version accepted for publication in Phys. Rev.
    corecore