12,822 research outputs found
Transfer molding of PMR-15 polyimide resin
Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations
Single Spin Asymmetries in Semi-Inclusive Electroproduction: Access to Transversity
We discuss the quark transversity distribution function and a possible way to
access it through the measurement of single spin azimuthal asymmetry in
semi-inclusive single pion electroproduction on a transversely polarized
target.Comment: 5 pages, Latex using aipproc.sty (included), to appear in proceedings
of "Second Workshop on Physics with an Electron Polarized Light Ion
Collider", Sept. 14-16, 2000, MIT, Cambridge, US
Percolation, depinning, and avalanches in capillary condensation of gases in disordered porous solids
We propose a comprehensive theoretical description of hysteresis in capillary
condensation of gases in mesoporous disordered materials. Applying mean-field
density functional theory to a coarse-grained lattice-gas model, we show that
the morphology of the hysteresis loops is influenced by out-of-equilibrium
transitions that are different on filling and on draining. In particular,
desorption may be associated to a depinning process and be percolation-like
without explicit pore-blocking effects.Comment: 4 pages, 5 figure
Domain Dynamics of Magnetic Films with Perpendicular Anisotropy
We study the magnetic properties of nanoscale magnetic films with large
perpendicular anisotropy comparing polarization microscopy measurements on
Co_28Pt_72 alloy samples based on the magneto-optical Kerr effect with Monte
Carlo simulations of a corresponding micromagnetic model. We focus on the
understanding of the dynamics especially the temperature and field dependence
of the magnetisation reversal process. The experimental and simulational
results for hysteresis, the reversal mechanism, domain configurations during
the reversal, and the time dependence of the magnetisation are in very good
qualitative agreement. The results for the field and temperature dependence of
the domain wall velocity suggest that for thin films the hysteresis can be
described as a depinning transition of the domain walls rounded by thermal
activation for finite temperatures.Comment: 7 pages Latex, Postscript figures included, accepted for publication
in Phys.Rev.B, also availible at:
http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm
Models of dynamic extraction of lipid tethers from cell membranes
When a ligand that is bound to an integral membrane receptor is pulled, the
membrane and the underlying cytoskeleton can deform before either the membrane
delaminates from the cytoskeleton or the ligand detaches from the receptor. If
the membrane delaminates from the cytoskeleton, it may be further extruded and
form a membrane tether. We develop a phenomenological model for this processes
by assuming that deformations obey Hooke's law up to a critical force at which
the cell membrane locally detaches from the cytoskeleton and a membrane tether
forms. We compute the probability of tether formation and show that they can be
extruded only within an intermediate range of force loading rates and pulling
velocities. The mean tether length that arises at the moment of ligand
detachment is computed as are the force loading rates and pulling velocities
that yield the longest tethers.Comment: 16 pages, 7 figure
A coarse grained model of granular compaction and relaxation
We introduce a theoretical model for the compaction of granular materials by discrete vibrations which is expected to hold when the intensity of vibration is low. The dynamical unit is taken to be clusters of granules that belong to the same collective structure. We rigourously construct the model from first principles and show that numerical solutions compare favourably with a range of experimental results. This includes the logarithmic relaxation towards a statistical steady state, the effect of varying the intensity of vibration resulting in a so-called `annealing' curve, and the power spectrum of density fluctuations in the steady state itself. A mean-field version of the model is introduced which shares many features with the exact model and is open to quantitative analysi
Seeking for a fingerprint: analysis of point processes in actigraphy recording
Motor activity of humans displays complex temporal fluctuations which can be
characterized by scale-invariant statistics, thus documenting that structure
and fluctuations of such kinetics remain similar over a broad range of time
scales. Former studies on humans regularly deprived of sleep or suffering from
sleep disorders predicted change in the invariant scale parameters with respect
to those representative for healthy subjects. In this study we investigate the
signal patterns from actigraphy recordings by means of characteristic measures
of fractional point processes. We analyse spontaneous locomotor activity of
healthy individuals recorded during a week of regular sleep and a week of
chronic partial sleep deprivation. Behavioural symptoms of lack of sleep can be
evaluated by analysing statistics of duration times during active and resting
states, and alteration of behavioural organization can be assessed by analysis
of power laws detected in the event count distribution, distribution of waiting
times between consecutive movements and detrended fluctuation analysis of
recorded time series. We claim that among different measures characterizing
complexity of the actigraphy recordings and their variations implied by chronic
sleep distress, the exponents characterizing slopes of survival functions in
resting states are the most effective biomarkers distinguishing between healthy
and sleep-deprived groups.Comment: Communicated at UPON2015, 14-17 July 2015, Barcelona. 21 pages, 11
figures; updated: figures 4-7, text revised, expanded Sec. 1,3,
The 67 Hz Feature in the Black Hole Candidate GRS 1915+105 as a Possible ``Diskoseismic'' Mode
The Rossi X-ray Timing Explorer (RXTE) has made feasible for the first time
the search for high-frequency (~ 100 Hz) periodic features in black hole
candidate (BHC) systems. Such a feature, with a 67 Hz frequency, recently has
been discovered in the BHC GRS 1915+105 (Morgan, Remillard, & Greiner). This
feature is weak (rms variability ~0.3%-1.6%), stable in frequency (to within ~2
Hz) despite appreciable luminosity fluctuations, and narrow (quality factor Q ~
20). Several of these properties are what one expects for a ``diskoseismic''
g-mode in an accretion disk about a 10.6 M_sun (nonrotating) - 36.3 M_sun
(maximally rotating) black hole (if we are observing the fundamental mode
frequency). We explore this possibility by considering the expected luminosity
modulation, as well as possible excitation and growth mechanisms---including
turbulent excitation, damping, and ``negative'' radiation damping. We conclude
that a diskoseismic interpretation of the observations is viable.Comment: 4 Pages, Latex (emulateapj.sty included), to Appear in ApJ Letters,
Vol. 477, Final Version with Updated Reference
Measurements of pernitric acid at the South Pole during ISCAT 2000
The first measurements of pernitric acid at the South Pole were performed during the second Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT 2000). Observed HO2NO2 concentrations averaged 25 pptv. Simple steady-state calculations constrained by measurements show that the lifetime of pernitric acid was largely controlled by dry deposition, with thermal decomposition becoming increasingly important at warmer temperatures. We determined that the pernitric acid equilibrium constant is less uncertain than indicated in the literature. One consequence of pernitric acid deposition to the snow surface is that it is an important sink for both NOx and HOx. Another is that the photochemistry of HO2NO2 in the Antarctic snowpack may be a NOx source in addition to nitrate photolysis. This might be one of the important differences in snow photochemistry between the South Pole and warmer polar sites
Half-Skyrmions, Tensor Forces and Symmetry Energy in Cold Dense Matter
In a previous article, the 4D half-skyrmion (or 5D dyonic salt) structure of
dense baryonic matter described in crystalline configuration in the large
limit was shown to impact nontrivially on how anti-kaons behave in compressed
nuclear matter with a possible implication on an "ice-9" phenomenon of deeply
bound kaonic matter and condensed kaons in compact stars. We extend the
analysis to make a further prediction on the scaling properties of hadrons that
have a surprising effect on the nuclear tensor forces, the symmetry energy and
hence on the phase structure at high density. We treat this problem relying on
certain topological structure of chiral solitons. Combined with what can be
deduced from hidden local symmetry for hadrons in dense medium and the "soft"
dilatonic degree of freedom associated with the trace anomaly of QCD, we
uncover a novel structure of chiral symmetry in the "supersoft" symmetry energy
that can influence the structure of neutron stars.Comment: 8 pages, 4 figures; contents unchanged but expanded for a journa
- …