12,744 research outputs found

    Accretion variability of Herbig Ae/Be stars observed by X-Shooter. HD 31648 and HD 163296

    Get PDF
    This work presents X-Shooter/VLT spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of twelve ultraviolet, optical and near infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 x 10^-7 and 4.50 x 10^-7 Msun yr^-1 for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ~ 15 years. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.Comment: 14 pages, 7 Figures, Accepted in Ap

    Intrinsic limitations of inverse inference in the pairwise Ising spin glass

    Full text link
    We analyze the limits inherent to the inverse reconstruction of a pairwise Ising spin glass based on susceptibility propagation. We establish the conditions under which the susceptibility propagation algorithm is able to reconstruct the characteristics of the network given first- and second-order local observables, evaluate eventual errors due to various types of noise in the originally observed data, and discuss the scaling of the problem with the number of degrees of freedom

    Software infrastructure for solving non-linear partial differential equations and its application to modelling crustal fault systems

    Get PDF
    In this paper we will give a brief introduction into the Python-based modelling language escript. We will present a model for the dynamics of fault systems in the Earth's crust and then show how escript is used to implement solution algorithms for a dynamic as well as a quasi-static scenario

    Thermodynamics of natural images

    Get PDF
    The scale invariance of natural images suggests an analogy to the statistical mechanics of physical systems at a critical point. Here we examine the distribution of pixels in small image patches and show how to construct the corresponding thermodynamics. We find evidence for criticality in a diverging specific heat, which corresponds to large fluctuations in how "surprising" we find individual images, and in the quantitative form of the entropy vs. energy. The energy landscape derived from our thermodynamic framework identifies special image configurations that have intrinsic error correcting properties, and neurons which could detect these features have a strong resemblance to the cells found in primary visual cortex

    Regularization of odd-dimensional AdS gravity: Kounterterms

    Get PDF
    As an alternative to the Dirichlet counterterms prescription, I introduce the concept of Kounterterms as the boundary terms with explicit dependence on the extrinsic curvature K_{ij} that regularize the AdS gravity action. Instead of a Dirichlet boundary condition on the metric, a suitable choice of the boundary conditions --compatible with any asymptotically AdS (AAdS) spacetime-- ensures a finite action principle for all odd dimensions. Background-independent conserved quantities are obtained as Noether charges associated to asymptotic symmetries and their general expression appears naturally split in two parts. The first one gives the correct mass and angular momentum for AAdS black holes and vanishes identically for globally AdS spacetimes. Thus, the second part is a covariant formula for the vacuum energy in AAdS spacetimes and reproduces the results obtained by the Dirichlet counterterms method in a number of cases. It is also shown that this Kounterterms series regularizes the Euclidean action and recovers the correct black hole thermodynamics in odd dimensions.Comment: 35+6 pages, 8 references and an appendix added, improved discussion on boundary conditions and geometrical origin of Kounterterms. Version accepted in JHE

    Thermodynamics of Black Holes in Schroedinger Space

    Full text link
    A black hole and a black hyperboloid solutions in the space with the Schroedinger isometries are presented and their thermodynamics is examined. The on-shell action is obtained by the difference between the extremal and non-extremal ones with the unusual matching of the boundary metrics. This regularization method is first applied to the black brane solution in the space of the Schroedinger symmetry and shown to correctly reproduce the known thermodynamics. The actions of the black solutions all turn out to be the same as the AdS counterparts. The phase diagram of the black hole system is obtained in the parameter space of the temperature and chemical potential and the diagram contains the Hawking-Page phase transition and instability lines.Comment: 20 page
    corecore