
Software infrastructure for solving non-linear

partial differential equations and its

application to modelling crustal fault systems

L. Gross, P. Mora, E. Saez, D. Weatherley, H. Xing ∗

October 6, 2005

Abstract

In this paper we will give a brief introduction into the python based

modelling language escript. We will present a model for the dynamics

of fault systems in the Earth’s crust and then show how escript is

used to implement solution algorithms for a dynamic as well as a

quasi-static scenario.

Contents

1 Introduction 2

2 A brief description of escript 2

3 Governing equations 3

4 The dynamic case 6

5 The quasi-static case 8

6 Summary 9

∗Earth Systems Science Computational Center, The University of Queensland, Bris-

bane, Australia mailto:gross@esscc.uq.edu.au

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Modelling fault systems in the Earth’s crust is important for the understand-
ing and prediction of earthquakes. The dynamics of fault systems is driven
through external forces, such as tectonic plate motion, and through stress
perturbations due to seismicity in the area. Seismic activity can be regarded
as contact between deformable rocks with a stick-slip friction model along
active faults [1].

The model consists of a system of time-dependent, non-linear partial dif-
ferential equations (PDEs), see section 3. Using a suitable time integration
scheme (such as backward Euler) and, if required, an iterative scheme at
each time step (such as Newton-Raphson iteration) the solution of the prob-
lem is transfered into a sequence of solutions of linear PDEs. The modelling
environment escript provides the functionality to implement these types of
algorithms at a high level. The resulting linear PDEs are solved by calling a
suitable C or C++ solver library. In the current implementation escript uses
the finite element library finley [2] as a PDE solver. However, the design
of escript allows the simultaneous inclusion of various PDE discretization
techniques and solver libraries.

In the next section we will give a brief overview of escript. Then we
will present the governing equations for modeling crustal fault systems. In
section 4 we will show how escript can be used to implement an explicit time
integration scheme for the dynamic case. Section 5 will examine the solution
of the quasi-static case.

2 A brief description of escript

escript is an extension of the interactive scripting environment python [7]. It
introduces two new classes, namely the Data class and the linearPDE class.

Objects of the Data class define quantities with a spatial distribution
which are represented through their values on sample points. Examples are
a temperature distribution given through its values at the nodes of a finite
element mesh and a stress tensor at the quadrature points in the elements
of a finite element mesh. In escript scalar, vector and tensorial quantities up
to order 4 are supported. Objects can be manipulated by applying unitary
operations (for instance cos ,sin, log) and be combined by applying binary
operations (for instance +, − ,∗, /). A Data object is linked with a certain
interpretation provided from a numerical library, for instance a PDE solver.
If needed during data manipulations escript invokes an interpolation. Typi-
cally, this occurs in binary operations when the arguments are represented in

2

different ways or when data are passed to a numerical library which requires
data to be represented in a particular way, such as a finite element (FEM)
solver that requires the PDE coefficients on quadrature nodes.

A linearPDE object is used to define a general linear, steady, second
order PDE for an unknown function u on the domain Ω. In tensor notation,
the PDE has the form

−(Aijkluk,l + Bijkuk),j + Cikluk,l + Dikuk = −Xij,j + Yi , (1)

where uk denotes the components of the function u and u,j denotes the deriva-
tive of u with respect to the j-th spatial direction. The following (natural)
boundary conditions for the flux are considered:

njJij + dikuk = yi with flux Jij = Aijkluk,l + Bijkuk − Xij , (2)

where n denotes the outer normal field of the domain. Notice that A, B
and X are identical to the coefficients in the PDE (1) while d and y are
coefficients defined on the boundary Γ. Discontinuities across Γfault within
the domain Ω are considered in the form:

njJ
0
ij = njJ

1
ij = ycontact

i − dcontact
ik [u]k . (3)

In this condition, J0 and J1 are the flux on side 0 and side 1 of the disconti-
nuity Γfault respectively, n is the normal field of the fault pointing away from
side 0 and [u] = u1 − u0 is the jump of u across Γfault. Moreover, constraints
of the form

ui = ri where qi > 0 (4)

can be considered. Constraints overwrite any condition set by equations (1),
(2) and (3) wherever the characteristic function q is positive. The functions
A, B, C, D, X, Y , y, d, ycontact, dcontact, r and q are the coefficients of the
PDE and are typically defined by Data objects. When a solution of the PDE
is requested, escript passes the PDE to a finite element (FEM) solver library
such as finley [2] which returns a Data object representing the solution by its
values at the nodes of the FEM mesh.

3 Governing equations

For modelling a fault system within a 2-dimensional region Ωsuch as we want
to calculate the displacement field u = (u1, u2) for any time t > 0 by solving
the wave equation

ρui,tt = −σij,j + Fi (5)

3

on the domain Ω where ρ is the known density and Fi is a field of internal
loads. The function σij is the stress field which in case of an isotropic, linear
elastic material is given by

σij = λuk,kδij + µ(ui,j + uj,i) , (6)

where λ and µ are the Lame coefficients and δij denotes the Kronecker sym-
bol. The displacement u satifies the initial conditions

ui(0) = 0 and ui,t(0) = 0 . (7)

On some portion ΓD of the boundary Γ the displacement field is prescribed
for all time t > 0 by

ui = udi , (8)

while on ΓN = Γ − ΓD the normal stress is given by

σijnj = f ext
i (9)

for all time t > 0. The functions udi and f ext
i are known, time-dependend

functions on ΓD and ΓN , respectively.
On the fault(s) Γfault the stresses σ0 and σ1 on both sides of the fault

have to meet a contact condition

fi = σ0
ijnj = σ1

ijnj . (10)

The contact stress fi is decomposed in its normal component fn and its
tangential component fτ :

fi = fnni + fττi , (11)

where τ = (−n2, n1) denotes the tangential vector on the fault. The sides fac-
ing the fault may not penetrate. That means that the the normal component
[u]n of the jump [u] of the displacement field across the fault is non-negative:

[u]n := [u]ini ≥ 0 . (12)

The normal contact stress fn is chosen to work against penetration by setting

fn = min(En[u]n, 0) , (13)

where En is a positive penalty parameter.

4

In the tangential direction a stick-slip friction model is used. The contact
stress has to meet the yield condition

Φ := |fτ | − µd|fn| ≤ 0 , (14)

where µd is the dynamic friction coefficient which will be defined later. It
is still not clear yet if this yield condition is leading to realistic earthquake
modelling but is sufficient for the purpose of this paper.

In the following tev is the time when the fault changes from the stick state
(Φ < 0) to the slip state (Φ = 0) or from the slip state to the stick state.
Note that tev is a function of its position along the fault. The tangential
dislocation [u]τ and the slip s after an event are defined by

[u]τ := [u]iτi and s = [u]τ − [u]τ (tev) . (15)

For the stick state (Φ < 0), we set

fτ = f el
τ := Eτs + fτ (tev) , (16)

where Eτ is a positive constant. This condition forces the fault to maintain
its tangential dislocation at the value [u]τ (tev) after changing from slip to
stick. For the slip state (Φ = 0), we set

fτ = sgn(f el
τ)µd|fn| , (17)

where sgn(s) denotes the sign of argument s. Combining conditions (16),
(17) and (14) we obtain

fτ = sgn(f el
τ) · min(|f el

τ |, µd|fn|) . (18)

To define the dynamic friction coefficient µd, we use a slip weakening frictional
relation

µd = µ0 + (µs − µ0)

(

1 −
min(|s|, Dc)

Dc

)

(19)

with µ0 the minimum dynamic friction, µs > µ0 the static friction coefficient
and Dc > 0 is the critical slip distance. In more realistic models, the slip
weakening given by (19) has to be combined with slip rate weakening, see [4],
but is ignored here to simplify the presentation.

In the following, we will look at two different schemes for solving the
equations for the displacement field u. The first scheme implements the
dynamic case using an explicit time-integration scheme. The dynamic case is
relevant from just before until shortly after earthquakes. The second scheme,
which implements the quasi-static case and is relevant for the period between
earthquakes, uses an implicit scheme. We will use the notation u̇ = u,t for
the velocity and ü = u,tt for the acceleration field. Let t(n) denote the time
corresponding to the n-th time step and h(n) = t(n) − t(n−1) denote the time
step size. In the following the upper index (n) refers to values at time t(n).

5

4 The dynamic case

Around the time of seismic activity where ρu,tt is large, wave propagation has
to be modeled, see [6]. The problem in this case is that in a bounded domain,
waves are reflected on the boundary although in reality they propagate out
of the region. To include this in the model one can introduce non-reflecting
boundary conditions. Here, we introduce an additional artificial viscosity
term into the wave equation by setting for given constants η and vref

F = −ηρ(u̇ − vref) . (20)

We employ the explicit velocity-Verlet scheme with constant time step size
h(n) = h to solve the wave propagation equation (5):

u̇(n) = u̇(n−1) +
h

2

(

ü(n) + ü(n−1)
)

, (21)

u(n) = u(n−1) + hu̇(n−1) +
h2

2
ü(n−1) . (22)

This scheme is designed to solve a system of equations of the form ü = G(u)
where one sets ü(n) = G(u(n−1)). For the case of constant material parameters

we set h = 0.1
√

ρ

λ+2µ
ω where ω is the diameter of the smallest element to

satisfy the Courant condition, see [6].
For a given stress σ let γ be the solution of

ργi = −σij,j (23)

together with the natural boundary condition (9), contact condition (11) and
constraint γi = udi,tt on ΓD. Using the stress distribution at time t(n−1) in
the wave equation (5) for time t(n) we get

ü(n) + ηu̇(n) = γ(n−1) + ηvref . (24)

Eliminating u̇(n) from equation (21) and equation (24) gives

ü(n) =
1

1 + ηh

2

(γ(n−1) − η(u̇(n−1) − vref) −
ηh

2
ü(n−1)) . (25)

In each time step we have to solve (23) to get γ. When using the linearPDE

class we set

Dij = ρδij , Xij = σ
(n−1)
ij ,

yi = f ext
i (t(n−1)) , ycontact

ij = fi(t
(n−1)) , ri = udi,tt(t

(n)) .
(26)

The following script shows the implementation of the explicit time integration
scheme using escript (some initialization has been dropped):

6

pde=LinearPDE(dom,numSolutions=2)

pde.setValue(D=rho*kronecker(dom),q=GammaD)

pde.setSolverMethod(pde.LUMPING)

side0=FunctionOnContactOne(dom)

side1=FunctionOnContactZero(dom)

n=side0.getNormal()

tau=matrixmult([[0,-1],[1,0]],n)

while t<t_end:

g=grad(u)

stress=trace(g)*lame_lambda*kronecker(pde)+ \

lame_mu*(g+transpose(g))

pde.setValue(X=stress,y_contact=f_n*n+f_tau*tau, \

y=getF(t,dom),r=getUd_tt(t,dom))

gamma=pde.getSolution()

a_new=1/(1+h*eta/2)*(gamma-eta*(v-v_ref)-(eta*h)/2*a)

u+=h*v+h**2/2*a

v+=h/2*(a+a_new)

a=a_new

j=u.interpolate(side1)-u.interpolate(side0)

j_tau,j_n=inner(j,tau),inner(j,n)

s=j_tau-j_tau_ev

mu_d=mu_0+(mu_s-mu_0)*(1-minimum(abs(s),D_c)/D_c)

f_tau_el=E_tau*s+f_tau_ev

f_n=minimum(E_n*j_n,0)

f_tau=sign(f_tau_el)*minimum(abs(f_tau_el),mu_d*abs(f_n))

stck,stck_old=(abs(f_tau)-mu_d*abs(f_n)).whereNegative(),stck

ev=abs(stck_old-stck)

j_tau_ev=j_tau*ev+j_tau_ev*(1.-ev)

f_tau_ev=f_tau*ev+f_tau_ev*(1.-ev)

t+=h

dom is the object defining the domain and the discretization method (the
actual discretization method does not apprear in the script). The function
kronecker returns a representation of Kronecker symbol and inner calcu-
lates the inner product of its arguments at each element an the fault. The
functions updateSlip, getF and getUd_tt return the slip, the external stress
and udi,tt, respectively. The variable GammaD is a Data object masking the
location where udi,tt is applied as a constraint for the solution. The variables
side0 and side1 are handles for the top and bottom side of the faults, which
are defined in the domain dom. The variables mu_s, mu_0, D_c, E_n, E_tau,
lame_lambda, lame_mu and eta are the input parameters of the model.

7

5 The quasi-static case

Between earthquakes, we can assume ρui,tt ≈ 0 so no wave propagation is
considered, see [5]. In this case no viscosity term is required and an implicit
time integration scheme can be employed:

u(n) = u(n−1) + h(n)u̇(n) (27)

with a sufficiently small step size h(n). For instance one can choose h(n) such

that the relative size h(n) ‖u̇(n)‖

‖u(n−1)‖
of the displacement increment stays below

a given tolerance.
A boundary value problem for u̇(n) is formulated by changing the model

equations of section 3 into equations for rates. From eqution (5) we obtain

−(σ̇
(n)
ij),j = 0 with σ̇

(n)
ij = λu̇

(n)
k,kδij + µ(u̇

(n)
i,j + u̇

(n)
j,i) (28)

and the boundary condition

u̇
(n)
i = ui,t(t

(n)) on ΓD and σ̇
(n)
ij nj = ḟ ext

i,t (t(n)) on ΓN . (29)

On the fault we have ḟ
(n)
i = ḟ

(n)
n ni + ḟ

(n)
τ τi where from equation (13)

ḟ (n)
n = G(n−1)[u̇(n)]n with G(n−1) =

{

En , [u(n−1)]n ≤ 0 ,
0 , otherwise .

(30)

In the stick state one gets from equations (15) and (16)

ḟ (n)
τ = Eτ [u̇

(n)]τ , (31)

and for the slip state with µ
(n−1)
d ≈ µ

(n)
d and f (n−1) ≈ f (n) we get from

equations (17) and (19)

ḟ (n)
τ = sgn(f el(n−1)

τ f (n−1)
n)

[

µ
(n−1)
d ḟ (n)

n + f (n−1)
n µ̇

(n)
d

]

, (32)

where

µ̇
(n)
d = K(n−1)[u̇(n)]τ , K(n−1) =

{

−sgn(s(n−1))µs−µ0

Dc

, |s(n−1)| < Dc ,

0 , otherwise.
(33)

Combining equations (30), (31), (32) and (33) the contact condition on the
fault is

ḟ
(n)
i = (G(n−1)njni + (H (n−1)nj + J (n−1)τj)τi)[u̇

(n)
j] (34)

8

with H (n−1) = 0 and J (n−1) = Eτ in the stick state and with H (n−1) =
sgn(f

el(n−1)
τ f

(n−1)
n)µ

(n−1)
d G(n−1) and J (n−1) = sgn(f

el(n−1)
τ)|f

(n−1)
n |K(n−1) in

the slip state.
Equation (28) with boundary conditions (29) and contact condition (34)

forms a boundary value problem for the increment u̇(n). The linearPDE class
can be used to solve this problem. The following values are chosen:

Aijkl = λδijδkl + µ(δikδjl + δjkδil) , yi = f ext
i,t (t(n)) ,

dcontact
ij = G(n−1)njni + H(n−1)njτi + J (n−1)τjτi , ri = ui,t(t

(n)) .
(35)

The following script implements the quasi-static algorithm:

hook=Tensor4(0,what=Function(dom))

for i in range(dom.getDim()):

for l in range(dom.getDim()):

hook[i,i,l,l]+=lame_lambda

hook[i,l,i,l]+=lame_mu

hook[i,l,l,i]+=lame_mu

pde=LinearPDE(dom)

pde.setValue(A=hook,q=GammaD)

<some initialization , see dynamic case>

while t<t_end:

K=-sign(s)*(mu_s-mu_0)/D_c*(abs(s)-D_c).whereNegative()

G=E_n*j_n.whereNonPositive()

H=sign(f_tau_el*f_n)*mu_d*G*(1-stck)

J=sign(f_tau_el)*f_n*K*(1.-stck)+E_tau*stck

pde.setValue(\

d_contact=G*outer(n,n)+outer(H*n+J*tau,tau), \

y=getF_t(t,dom),r=getUd_t(t,dom))

v=pde.getSolution(verbose=True)

h=tol*Lsup(u)/Lsup(v)

<update s, j_n, f_n, f_tau_el, stck, see dynamic case>

t+=h

The functions getF_t and getUd_t return the rate of external stress and
udi,t, respectively.

6 Summary

In the paper we have shown how escript can be used to quickly implement
complex models such as models for the dynamics of crustal fault systems. The
presented scripts have been tested on the simple test case of two compressed

9

and sheared blocks of elastic material. However, it is not the purpose of
this paper to test the proposed numerical methods neither to discuss the
validation of the model, which would require a more detailed discussion of
the system loading. Our aim was to demonstrate how escript is used in
a practical modelling situation. For model validation we refer to [6] for
the dynamic case and to [5] for the quasi-static case, where the latter is
not based on the escript implementation presented here. Current work is
focusing on developing a combined model which uses a dynamic model during
an earthquake and the quasi-static approach between events.

Acknowledgements: The work is supported by Australian Common-
wealth Government through the ACcESS MNRF, Queensland State Govern-
ment Smart State Research Facility Fund, The University of Queensland and
SGI.

References

[1] W. F. Brace, J. D. Byerlee Stick-slip as a Mechanism for Earthquakes.
Science. 153:990–992. 1966.

[2] L. Gross, M. Davies, J. Gerschwitz A High-Level Programming Lan-
guage for Modeling the Earth Proc. 4th ACES Workshop 2004, Beijing,
in print.

[3] M. Davies, L. Gross, H.-B. Mhlhaus,. Scripting High Performance Earth
Systems Simulations on the SGI Altix 3700 Proc. 7th Intl Conf on

High Performance Computing and Grid in Asia Pacific Region, 244–
251, 2004.

[4] P. Mora, D. Place. Simulation of the Frictional Stick-slip Instability.
Pure Appl. Geophys., 143:61–87, 1994.

[5] H. L. Xing, P. Mora, A. Makinouchi. Finite Element Analysis of Fault
Bend Influence on Stick-Slip Instability along an Intra-Plate Fault. Pure

Appl. Geophys., 161:2091-2102, 2004.

[6] E. Saez, P. Mora, L. Gross, D. Weatherley. A Finite Element Method
for Simulating the Physics of Fault Systems. Proc. 4th ACES Workshop

2004, in print.

[7] www.python.org [on-line].

10

