15,054 research outputs found

    Unjamming a granular hopper by vibration

    Get PDF
    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics

    Bounds on the force between black holes

    Full text link
    We treat the problem of N interacting, axisymmetric black holes and obtain two relations among physical parameters of the system including the force between the black holes. The first relation involves the total mass, the angular momenta, the distances and the forces between the black holes. The second one relates the angular momentum and area of each black hole with the forces acting on it.Comment: 13 pages, no figure

    Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations

    Get PDF
    Killing vector fields in three dimensions play important role in the construction of the related spacetime geometry. In this work we show that when a three dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the ricci tensor. Using this property we give ways of solving the field equations of Topologically Massive Gravity (TMG) and New Massive Gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three dimensional symmetric tensors of the geometry, the ricci and einstein tensors, their covariant derivatives at all orders, their products of all orders are completely determined by the Killing vector field and the metric. Hence the corresponding three dimensional metrics are strong candidates of solving all higher derivative gravitational field equations in three dimensions.Comment: 25 pages, some changes made and some references added, to be published in Classical and Quantum Gravit

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide

    Full text link
    We investigate the one-dimensional expansion of a Bose-Einstein condensate in an optical guide in the presence of a random potential created with optical speckles. With the speckle the expansion of the condensate is strongly inhibited. A detailed investigation has been carried out varying the experimental conditions and checking the expansion when a single optical defect is present. The experimental results are in good agreement with numerical calculations based on the Gross-Pitaevskii equation.Comment: 5 pages, 5 figure

    Granular Pressure and the Thickness of a Layer Jamming on a Rough Incline

    Full text link
    Dense granular media have a compaction between the random loose and random close packings. For these dense media the concept of a granular pressure depending on compaction is not unanimously accepted because they are often in a "frozen" state which prevents them to explore all their possible microstates, a necessary condition for defining a pressure and a compressibility unambiguously. While periodic tapping or cyclic fluidization have already being used for that exploration, we here suggest that a succession of flowing states with velocities slowly decreasing down to zero can also be used for that purpose. And we propose to deduce the pressure in \emph{dense and flowing} granular media from experiments measuring the thickness of the granular layer that remains on a rough incline just after the flow has stopped.Comment: 10 pages, 2 figure

    Correlated two-pion exchange and large-N(C) behavior of nuclear forces

    Full text link
    The effect of correlated scalar-isoscalar two-pion exchange (CrTPE) modes is considered in connection with central and spin-orbit parts of the NN force. The two-pion correlation function is coupled directly to the scalar form factor of the nucleon which we calculate in the large-N(C) limit where the nucleon can be described as a soliton of an effective chiral theory. The results for the central NN force show a strong repulsive core at short internucleon distances supplemented by a moderate attraction beyond 1 fm. The long-range tail of the central NN potential is driven by the the pion-nucleon sigma term and consistent with the effective σ\sigma meson exchange. The spin-orbit part of the NN potential is repulsive. The large-N(C) scaling behavior of the scalar-isoscalar NN interaction is addressed. We show that the spin-orbit part is O(1/N^2(C)) in strength relative to the central force resulting in the ratio 1/9\simeq 1/9 suggested by the 1/N(C) expansion for N(C)=3. The latter is in agreement with our numerical analysis and with the Kaplan-Manohar large-N(C) power counting. Unitarization of the ππ\pi \pi scattering amplitude plays here an important role and improves the tree level results. Analytical representations of the CrTPE NN potential in terms of elementary functions are derived and their chiral content is discussed.Comment: 29 pages, 7 figure

    Fermi-Walker gauge in 2+1 dimensional gravity.

    Get PDF
    It is shown that the Fermi-Walker gauge allows the general solution of determining the metric given the sources, in terms of simple quadratures. We treat the general stationary problem providing explicit solving formulas for the metric and explicit support conditions for the energy momentum tensor. The same type of solution is obtained for the time dependent problem with circular symmetry. In both cases the solutions are classified in terms of the invariants of the Wilson loops outside the sources. The Fermi-Walker gauge, due to its physical nature, allows to exploit the weak energy condition and in this connection it is proved that, both for open and closed universes with rotational invariance, the energy condition imply the total absence of closed time like curves. The extension of this theorem to the general stationary problem, in absence of rotational symmetry is considered. At present such extension is subject to some assumptions on the behavior of the determinant of the dreibein in this gauge. PACS number: 0420Comment: 28 pages, RevTex, no figure

    Extracting the depolarization coefficient D_NN from data measured with a full acceptance detector

    Full text link
    The spin transfer from vertically polarized beam protons to Lambda or Sigma hyperons of the associated strangeness production pp -> pK Lambda (Sigma) is described with the depolarization coefficient D_NN. As the polarization of the hyperons is determined by their weak decays, detectors, which have a large acceptance for the decay particles, are needed. In this paper a formula is derived, which describes the depolarization coefficient D_NN by count rates of a 4 pi detector. It is shown, that formulas, which are given in publications for detectors with restricted acceptance, are specific cases of this formula for a 4 pi detector.Comment: Accepted for publication by Nuclear Instruments and Methods in Physics Research Section

    Retardation of oil cracking to gas and pressure induced combination reactions to account for viscous oil in deep petroleum basins: evidence from oil and n-hexadecane pyrolysis at water pressures up to 900bar

    Get PDF
    This study reports a laboratory pyrolysis experimental study on oil and n-hexadecane to rationalise the thermal stability of oil in deep petroleum reservoirs. Using a 25 ml Hastelloy pressure vessel, a 35° API North Sea oil (Oseberg) and n-hexadecane (n-C16), were pyrolysed separately under non-hydrous (20 bar), low pressure hydrous (175 bar) and high liquid water pressure (500 and 900 bar) at 350°C for 24 h. This study reports a laboratory pyrolysis experimental study on oil and n-hexadecane to rationalise the thermal stability of oil in deep petroleum reservoirs. Using a 25 ml Hastelloy pressure vessel, a 35° API North Sea oil (Oseberg) and n-hexadecane (n-C16), were pyrolysed separately under non-hydrous (20 bar), low pressure hydrous (175 bar) and high liquid water pressure (500 and 900 bar) at 350 °C for 24 h. This study shows that the initial cracking of oil and n-hexadecane to hydrocarbon gases was retarded in the presence of water (175 bar hydrous conditions) compared to low pressures in the absence of water (non-hydrous conditions). At 900 bar water pressure, the retardation of oil and n-hexadecane cracking was more significant compared to 175 bar hydrous and 500 bar water pressure conditions. Combination reactions have been observed for the first time in pressurised water experiments during the initial stages of cracking, resulting in the increased abundance of heavier n-alkane hydrocarbons (> C20), the amount of unresolved complex material (UCM), as well as the asphaltene content of the oil. These reactions, favoured by increasing water pressure provide a new mechanism for rationalising the thermal stability of oils, and for producing heavy oils at temperatures above which biodegradation can occur. Indeed, we demonstrate that bitumen from the high pressure Gulf of Mexico basin has been formed from lighter oil components and it possesses similar characteristics to the laboratory oils generated
    corecore