1,165 research outputs found

    `Oumuamua as a messenger from the Local Association

    Get PDF
    7 pages, one table, two figures, accepted for publication by ApJL. © 2018. The American Astronomical Society. All rights reserved.With a hyperbolic trajectory around the Sun, 'Oumuamua is the first confirmed interstellar object. However, its origin is poorly known. By simulating the orbits of 0.23 million local stars, we find 109 encounters with periastron less than 5 pc. 'Oumuamua's low peculiar velocity is suggestive of its origin from a young stellar association with similar velocity. In particular, we find that 'Oumuamua would have had slow encounters with at least five young stars belonging to the Local Association, thus suggesting these as plausible sites for formation and ejection. In addition to an extremely elongated shape, the available observational data for 'Oumuamua indicates a red color, suggestive of a potentially organic-rich and activity-free surface. These characteristics seem consistent with formation through energetic collisions between planets and debris objects in the middle part of a young stellar system. We estimate an abundance of at least 6.0 × 10 -3 au -3 for such interstellar objects with mean diameter larger than 100 m and find that it is likely that most of them will be ejected into the Galactic halo. Our Bayesian analysis of the available light curves indicates a rotation period of 6.96 +1.45 -0.39, which is consistent with the estimation by Meech et al. and shorter than those in other literature. The codes and results are available on GitHub (https://github.com/phillippro/Oumuamua).Peer reviewe

    An interdisciplinary system dynamics model for post-disaster housing recovery

    Get PDF
    Many previous disasters have demonstrated the need for extensive personal, public, and governmental expenditures for housing recovery highlighting the importance of studying housing recovery. Yet, much research is still needed to fully understand the multi-faceted and complex nature of housing recovery. The goal of this paper is to present a holistic model to further the understanding of the dynamic processes and interdependencies of housing recovery. The impetus for this work is that inequalities in housing recovery could be addressed more effectively if we better understood interconnected factors and dynamic processes that slow down recovery for some. Currently, there is a lack of understanding about such factors and processes. Literature from engineering and social sciences was reviewed to develop an integrated system dynamics model for post-disaster housing recovery. While it is beyond current capabilities to quantify such complexities, the presented model takes a major stride toward articulating the complex phenomenon that is housing recovery

    Temporal light field reconstruction for rendering distribution effects

    Get PDF
    Traditionally, effects that require evaluating multidimensional integrals for each pixel, such as motion blur, depth of field, and soft shadows, suffer from noise due to the variance of the high-dimensional integrand. In this paper, we describe a general reconstruction technique that exploits the anisotropy in the temporal light field and permits efficient reuse of samples between pixels, multiplying the effective sampling rate by a large factor. We show that our technique can be applied in situations that are challenging or impossible for previous anisotropic reconstruction methods, and that it can yield good results with very sparse inputs. We demonstrate our method for simultaneous motion blur, depth of field, and soft shadows

    Spin states of asteroids in the Eos collisional family

    Full text link
    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ~20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.Comment: Accepted for publication in ICARUS Special Issue - Asteroids: Origin, Evolution & Characterizatio

    Modeling the System Parameters of 2M1533+3759: A New Longer-Period Low-Mass Eclipsing sdB+dM Binary

    Full text link
    We present new photometric and spectroscopic observations for 2M 1533+3759 (= NSVS 07826147). It has an orbital period of 0.16177042 day, significantly longer than the 2.3--3.0 hour periods of the other known eclipsing sdB+dM systems. Spectroscopic analysis of the hot primary yields Teff = 29230 +/- 125 K, log g = 5.58 +/- 0.03 and log N(He)/N(H) = -2.37 +/- 0.05. The sdB velocity amplitude is K1 = 71.1 +/- 1.0 km/s. The only detectable light contribution from the secondary is due to the surprisingly strong reflection effect. Light curve modeling produced several solutions corresponding to different values of the system mass ratio, q(M2/M1), but only one is consistent with a core helium burning star, q=0.301. The orbital inclination is 86.6 degree. The sdB primary mass is M1 = 0.376 +/- 0.055 Msun and its radius is R1 = 0.166 +/- 0.007 Rsun. 2M1533+3759 joins PG0911+456 (and possibly also HS2333+3927) in having an unusually low mass for an sdB star. SdB stars with masses significantly lower than the canonical value of 0.48 Msun, down to as low as 0.30 Msun, were theoretically predicted by Han et al. (2002, 2003), but observational evidence has only recently begun to confirm the existence of such stars. The existence of core helium burning stars with masses lower than 0.40--0.43 Msun implies that at least some sdB progenitors have initial main sequence masses of 1.8--2.0 Msun or more, i.e. they are at least main sequence A stars. The secondary is a main sequence M5 star.Comment: 47 pages, 7 figure

    Media events and cosmopolitan fandom:"Playful nationalism' in the Eurovision Song Contest

    Get PDF
    Academic literature on media events is increasingly concerned with their global dimensions and the applicability of Dayan and Katz's (1992) theoretical concept in a post-national context. This paper contributes to this debate by exploring the Eurovision Song Contest as a global media event. In particular, we employ a perspective from 'inside the media event', drawing upon empirical material collected during the 2014 Eurovision final in Copenhagen and focusing on the experiences of fans attending the contest. We argue that the ESC as a media event is experienced by its fans as a cosmopolitan space, open and diverse, whereas national belonging is expressed in a playful way tied to the overall visual aesthetics of the contest. However, the bounded and narrow character of participation render this cosmopolitan space rather limited
    corecore