102 research outputs found

    Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and complexity

    Get PDF
    We propose a multi-step Richardson-Romberg extrapolation method for the computation of expectations Ef(XT)E f(X_{_T}) of a diffusion (Xt)t∈[0,T](X_t)_{t\in [0,T]} when the weak time discretization error induced by the Euler scheme admits an expansion at an order R≥2R\ge 2. The complexity of the estimator grows as R2R^2 (instead of 2R2^R) and its variance is asymptotically controlled by considering some consistent Brownian increments in the underlying Euler schemes. Some Monte carlo simulations carried with path-dependent options (lookback, barriers) which support the conjecture that their weak time discretization error also admits an expansion (in a different scale). Then an appropriate Richardson-Romberg extrapolation seems to outperform the Euler scheme with Brownian bridge.Comment: 28 pages, \`a para\^itre dans Monte Carlo Methods and Applications Journa

    Dynamic Analysis of Buried Structures

    Get PDF
    The transient response of a circular cylindrical cavity in a linear elastic or viscoelastic infinite or semi-infinite medium under conditions of plane strain is examined. The method employed is the dynamic Boundary Integral Equation Method in conjunction with the Laplace Transform. The results obtained are compared with results stemming from analytical solutions, where available, and numerical solutions to assess the accuracy, efficiency and applicability of the method

    Multi-level fast multipole BEM for 3-D elastodynamics

    No full text
    To reduce computational complexity and memory requirement for 3-D elastodynamics using the boundary element method (BEM), a multi-level fast multipole BEM (FM-BEM) based on the diagonal form for the expansion of the elastodynamic fundamental solution is proposed and demonstrated on numerical examples involving single-region and multi-region configurations where the scattering of seismic waves by a topographical irregularity or a sediment-filled basin is examined

    Besov priors for Bayesian inverse problems

    Get PDF
    We consider the inverse problem of estimating a function uu from noisy, possibly nonlinear, observations. We adopt a Bayesian approach to the problem. This approach has a long history for inversion, dating back to 1970, and has, over the last decade, gained importance as a practical tool. However most of the existing theory has been developed for Gaussian prior measures. Recently Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct Besov prior measures, based on wavelet expansions with random coefficients, and used these prior measures to study linear inverse problems. In this paper we build on this development of Besov priors to include the case of nonlinear measurements. In doing so a key technical tool, established here, is a Fernique-like theorem for Besov measures. This theorem enables us to identify appropriate conditions on the forward solution operator which, when matched to properties of the prior Besov measure, imply the well-definedness and well-posedness of the posterior measure. We then consider the application of these results to the inverse problem of finding the diffusion coefficient of an elliptic partial differential equation, given noisy measurements of its solution.Comment: 18 page

    Seismic damage estimation of in-plane regular steel/concrete composite moment resisting frames

    Get PDF
    © 2016 Elsevier Ltd. Simple empirical expressions to estimate maximum seismic damage on the basis of four well known damage indices for planar regular steel/concrete composite moment resisting frames having steel I beams and concrete filled steel tube (CFT) columns are presented. These expressions are based on the results of an extensive parametric study concerning the inelastic response of a large number of frames to a large number of ordinary far-field type ground motions. Thousands of nonlinear dynamic analyses are performed by scaling the seismic records to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, beam strength ratio, material strength and ground motion characteristics strongly influence structural damage. Nonlinear regression analysis is employed in order to derive simple formulae, which reflect the influence of the aforementioned parameters and offer a direct estimation of the damage indices used in this study. More specifically, given the characteristics of the structure and the ground motion, one can calculate the maximum damage observed in column bases and beams. Finally, three examples serve to illustrate the use of the proposed expressions and demonstrate their accuracy and efficiency

    Direct damage controlled seismic design of plane steel degrading frames

    Get PDF
    A new method for seismic design of plane steel moment resisting framed structures is developed. This method is able to control damage at all levels of performance in a direct manner. More specifically, the method: (a) can determine damage in any member or the whole of a designed structure under any given seismic load, (b) can dimension a structure for a given seismic load and desired level of damage and (c) can determine the maximum seismic load a designed structure can sustain in order to exhibit a desired level of damage. In order to accomplish these things, an appropriate seismic damage index is used that takes into account the interaction between axial force and bending moment at a section, strength and stiffness degradation as well as low cycle fatigue. Then, damage scales are constructed on the basis of extensive parametric studies involving a large number of frames exhibiting cyclic strength and stiffness degradation and a large number of seismic motions and using the above damage index for damage determination. Some numerical examples are presented to illustrate the proposed method and demonstrate its advantages against other methods of seismic design. © 2014, Springer Science+Business Media Dordrecht

    Hierarchical Bayesian level set inversion

    Get PDF
    The level set approach has proven widely successful in the study of inverse problems for inter- faces, since its systematic development in the 1990s. Re- cently it has been employed in the context of Bayesian inversion, allowing for the quantification of uncertainty within the reconstruction of interfaces. However the Bayesian approach is very sensitive to the length and amplitude scales in the prior probabilistic model. This paper demonstrates how the scale-sensitivity can be cir- cumvented by means of a hierarchical approach, using a single scalar parameter. Together with careful con- sideration of the development of algorithms which en- code probability measure equivalences as the hierar- chical parameter is varied, this leads to well-defined Gibbs based MCMC methods found by alternating Metropolis-Hastings updates of the level set function and the hierarchical parameter. These methods demon- strably outperform non-hierarchical Bayesian level set methods

    Langevin diffusions on the torus: estimation and applications

    Get PDF
    We introduce stochastic models for continuous-time evolution of angles and develop their estimation. We focus on studying Langevin diffusions with stationary distributions equal to well-known distributions from directional statistics, since such diffusions can be regarded as toroidal analogues of the Ornstein–Uhlenbeck process. Their likelihood function is a product of transition densities with no analytical expression, but that can be calculated by solving the Fokker–Planck equation numerically through adequate schemes. We propose three approximate likelihoods that are computationally tractable: (i) a likelihood based on the stationary distribution; (ii) toroidal adaptations of the Euler and Shoji–Ozaki pseudo-likelihoods; (iii) a likelihood based on a specific approximation to the transition density of the wrapped normal process. A simulation study compares, in dimensions one and two, the approximate transition densities to the exact ones, and investigates the empirical performance of the approximate likelihoods. Finally, two diffusions are used to model the evolution of the backbone angles of the protein G (PDB identifier 1GB1) during a molecular dynamics simulation. The software package sdetorus implements the estimation methods and applications presented in the paper
    • …
    corecore