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ABSTRACT 

 

The gradient theory of elasticity with damping is successfully employed to explain the 

experimentally observed shifting in resonance frequencies during forced harmonic torsional 

vibration tests of columns made of fine-grained material from their theoretically computed 

values on the basis of the classical theory of elasticity with damping. To this end, the 

governing equation of torsional vibrations of a column with circular cross-section is derived 

both by the lattice theory and the continuum gradient elasticity theory with damping, with 

consideration of micro-stiffness and micro-inertia effects. Both cases of a column with two 

rotating masses attached at its top and bottom, and of a column fixed at its base carrying a 

rotating mass at its free top, are considered. The presence of both micro-stiffness and micro-

inertia effects help to explain the observed natural frequency shifting to the left or to the right 

of the classical values depending on the nature of interparticle forces (repulsive or attractive) 

due to particle charge. A method for using resonance column tests to determine not only the 

shear modulus but also the micro-stiffness and micro-inertia coefficients of gradient elasticity 

for fine-grained materials is also proposed. 
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1. INTRODUCTION 

 

The most widely used laboratory test for measuring the shear modulus, G, of soils 

under low-strain conditions is the resonant column test [1]. To this end, the soil column (solid 

or hollow) is subjected to harmonic torsional vibrations and the strain amplitude is recorded 

for a series of loading frequencies. The lowest resonance frequency is the first natural 

frequency of the soil column. This frequency is used to back-calculate, on the basis of the 

classical wave equation governing the torsional vibrations of the column, the shear wave 

propagation velocity c. The shear modulus G, is then determined from c and the pre-specified 

mass density ρ of the soil material. 

Notwithstanding the validity and usefulness of the test, one could question the 

accuracy of the above procedure for determining G on the basis of only the first 

(fundamental) natural frequency of the specimen, by arguing that use of higher natural 

frequencies may lead to different, possibly more accurate, values of G. Furthermore, he could 

point out that, since the measured resonance frequency is in reality a damped frequency, the 

analytical frequency equation used should include damping easily measured during the 

resonant column test. Finally, it has been recently observed by Richter [2] during resonant 

column tests involving fine-grained materials that a shift in resonance frequencies to the left 

or to the right of their theoretically computed values by classical elastodynamic theory occurs. 

This shift to the left and to the right corresponds to repulsive and attractive granular materials, 

respectively, depending on particle electric charge [2]. However, these interesting 

experimental observations could not be explained by the classical theory of elasticity. 

In this paper, an effort is made to explain theoretically the experimentally observed 

frequency shifting and suggest a way for a more rational computation of G. This is 

accomplished by introducing into the aforementioned governing equation of torsional elastic 

vibrations with damping of a beam of circular cross-section microstructural effects. i.e., both 

micro-stiffness and micro-inertia effects with the aid of the lattice theory or the continuum 

gradient elasticity theory with two microstructural constants by following Polyzos and 

Fotiadis [3] and Mindlin [4], respectively. Both approaches lead to a governing equation of 

torsional motion including two length scale parameters, in addition to the classical shear 

modulus G, namely, the micro-stiffness or gradient coefficient g and the micro-inertia 

coefficient h. More specifically, it is shown that depending on the relation between the 

magnitudes of g and h, one can predict when the aforementioned frequency shifting will be to 

the left or to the right of the classically computed eigen-frequencies. Furthermore, since the 

system is characterized by three elastic constants instead of just one in the classical case, one 

can possibly engage the first three experimentally obtained resonance frequencies for 

computing G, g and h, thereby obtaining a more rational value of G than by classical means. 

Generalized elasticity theories taking into account microstructural effects have been 

successfully employed for studying torsional vibrations of beams modeling nanotubes. In this 

context, Gheshlaghi et al. [5] utilized the modified couple stress theory with one length scale 

parameter, Kahrobaiyan et al. [6] a strain gradient theory with three length scale parameters 

and Lim et al. [7] a nonlocal stress theory with one length scale parameter. However, none of 

the above works considers micro-inertia effects, which, as demonstrated in Georgiadis et al. 

[8], Askes et al. [9], Papargyri-Beskou et al. [10], Fafalis et al. [11] and Dontsov et al. [12] 

are not only important alongside the micro-stiffness ones, but also characterize the dynamic 

behavior of a wide class of materials and structures. Further, none of the above works 

considers the effect of internal viscoelastic damping on the response. In this work, both 

microstructural parameters play an equally important role and help to explain the dynamic 

behavior of granular beams under torsional vibrations. Besides, the effect of internal 

viscoelastic damping on the response is considered for a more realistic treatment of the 

problem. Additional discussion on theoretical aspects of gradient elasticity theory is presented 

in section 3. 
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2. RESONANT COLUMN TEST RESULTS FOR FINE-GRAINED MATERIAL 

 

 In his 2006 doctoral dissertation, Richter [2] presented experimental results on the 

dynamic behavior of fine-grained soils under cyclic loading, which find applications in a 

variety of soil dynamics problems. For this purpose, he employed model materials instead of 

natural fine-grained soil, i.e., α-Al2O3 powder (hard compact particles) and Laponite 

(synthetic clay) representing silt and clay, respectively. A good part, but not all, of the work 

in [2] can also be found in Richter and Huber [13, 14]. 

 Fine-grained materials like α-Al2O3 have a mean particle diameter of d50=0.8μm and 

exhibit a fabric depending on the surface forces between the grains, which are mainly 

responsible for the formation of the grain skeleton. In a fabric of attractive particles (particle 

charge pH=9.1), interparticle friction results in low density, while in a fabric of repulsive 

particles (particle charge pH=4.0) interparticle repulsion prevents friction and enhances 

densification, as shown in Fig. 1 taken from [2]. All these materials are, naturally, fine-

grained by geotechnical standards.  

 

 

Figure 1 
 

 

 Richter [2] reported on experimental results from resonant column tests conducted on 

fine-grained saturated α-Al2O3 columns subjected to torsional harmonic vibrations with the 

goal of determining the shear modulus G and the damping ratio D of these materials. The 

tests were conducted for small to medium values of engineering shear strains γ, i.e., for γ=10-7 

to 10-3, for values of frequency f varying from 0 to 5600 Hz and for values of confining 

pressure p΄ varying between 20 and 320 kPa. 

 

 

Figure 2 
 

 

 

Figure 2,a represents the resonant column test apparatus used by Richter [2], while 

Fig. 2,b its mathematical model. The height L and the radius r of the specimen are equal to 

0.10 m and 0.05 m, respectively, the polar moment of inertia of the cross-section of the 

specimen I
p

= pr4 / 2 =98.125x10-3 m4, while the mass moments of inertia of the top and 

bottom masses of the apparatus are JL=0.854549x10-3 Kgm2 and J0=57.352325x10-3Kgm2, 

respectively. Figures 3 and 4 contain representative results from Richter [2] corresponding to 

the cases of attractive (pH=9.1) and repulsive (pH=4.0) particles, respectively, for a confining 

pressure of 20 kPa. Both figures depict the normalized resonance factor Rt/Rb as function of 

frequency f, where the resonance factors Rt and Rb are defined as the ratios of the amplitudes 

of vibration At and Ab at the top and bottom, respectively, of the soil column to the static 

torsional angle θs. Furthermore, Figs 3 and 4 also depict analytical results obtained on the 

basis of the analytical solution due to Hardin [15]. The analytical results are based on the 

assumption that the material obeys the simple viscoelastic model of Kelvin-Voigt with 

viscosity coefficient μ equal to 686.2 Pa sec and 1119.8 Pa sec for attractive and repulsive 

particles, respectively. Since most soils exhibit frequency-independent damping [15, 16], 

μω/G should be a constant (or, equivalently, μ should be analogous to 1/ω), where ω=2πf is 

the circular frequency of vibration. Thus, Figs 3 and 4 present the analytic solution for 

μω/G=0.023 and 0.026 for the cases of attractive and repulsive particles, respectively. In 

plotting the analytical results, the two unknown parameters of the model μ or μω/G and G are 

set so that Rt/Rb and the resonance frequency of the first mode coincide. Inspection of Figs 3 



 4 

and 4 reveals that the hysteretic model (with μω/G=constant) is much closer to the 

experimental results, especially for higher frequencies, than the viscous model (with 

μ=constant), as expected [15, 16]. Also, the fact that both attractive and repulsive particles 

show frequency independent damping indicates that the damping character does not depend 

on surface forces and thus the material behavior is governed by solid particle contacts. 

However, the most important observation from Figs 3 and 4 is that the experimental values of 

resonance for all the depicted models show a shifting to the right of the analytical hysteretic 

ones for the case of attractive particles, and to the left of them for the case of repulsive 

particles. This phenomenon was not discussed by Richter [2] and, as a result, it remained 

unexplained. 

 

 

Figure 3 
 

Figure 4 
 

 

 In the following sections, an attempt will be made to theoretically explain the above 

phenomenon and also provide suggestions on how to obtain experimentally, from resonant 

column tests, the value of the shear modulus G as well as the values of microstructural 

parameters in a more rational and accurate way. This will be accomplished by employing a 

higher order (generalized) theory of elasticity or viscoelasticity. 

 

3. A SIMPLE GRADIENT THEORY OF ELASTICITY 

 

 When the dimensions of a structure or the wavelength of dynamic disturbances 

become comparable to the internal length scale of its elastic material, then size effects leading 

to wave dispersion are observed. These microstructural effects cannot be described by the 

classical theory of elasticity and resort should be made instead to higher order or generalized 

theories of elasticity possessing internal length scale(s). Such a microstructural theory of 

elasticity is the one due to Mindlin [4], which in its simplified forms has been successfully 

used to solve a variety of boundary value problems under static or dynamic conditions 

involving microstructures in microelectronic and micromechanical devices and materials like 

foams, granular assemblies, concrete, bones and composites. Comprehensive reviews on 

static and dynamic gradient elasticity theory and its applications can be found in [17-20]. 

Microstructural effects in the theory of gradient elasticity manifest themselves in the form of 

increased stiffness [21, 22], size effects [17, 23], elimination or reduction of singularities [24, 

25], increase of buckling loads and natural frequencies [21, 26, 27] and wave dispersion [8-

12, 28, 29]. 

 The simplest possible gradient elastic theory is the one with just one elastic constant 

(the gradient or micro-stiffness coefficient g with dimensions of length), in addition to the 

two classical elastic moduli (Young’s modulus E and Poisson’s ratio ν). It has been 

demonstrated in [8-12] that the presence of micro-inertia in dynamic microstructural 

problems, associated with an additional constant (the micro-inertia coefficient h with 

dimensions of length), is very important and has to be taken into account.  

 For reasons of completeness, the governing equations of motion in three-dimensional 

gradient elasticity with both micro-stiffness and micro-inertia effects and zero body forces, as 

obtained from those of Mindlin [4] under certain simplifications, are given in terms of the 

displacement vector u  as [9] 

 

 (1) 
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where λ, μ are the Lamé constants expressed in terms of E and ν as / [(1 )(1 2 )]E     
 and / 2(1 )E   . The total and Cauchy second order stress tensor σ and τ, respectively, as 

well as the third order double stress tensor μ are given by
  

 

 

(2) 

  

with I being the unit tensor and ε the strain tensor having the form 

 

 
1

2
   ε u u  

 

(3) 

 

Because the gradient elastic theory increases the order of space derivatives in 

comparison with the classical theory, additional non-classical boundary conditions are 

required for the establishment of well-posed boundary value problems. These are obtained 

with the use of variational statements [4, 30, 3]. For a smooth boundary, these conditions 

consist of the displacement vector u and/or the traction vector P prescribed over the boundary 

of the domain (classical conditions) and the normal displacement vector / n u  and/or the 

double traction vector R prescribed over that boundary (non-classical conditions) with n 

being the unit normal vector. 

Recently, Polyzos and Fotiadis [3] were able to derive Mindlin’s type of gradient 

elasticity via simple lattice models and provide expressions for the micro-stiffness and micro-

inertia coefficients g and h in terms of the distance l between two successive particles of the 

lattice structure. This was done for the case of a rod in axial vibration without damping. 

Viscoelastic effects in gradient elasticity have been considered and studied in [31] via the 

correspondence principle in connection with the static and dynamic analysis of an axial bar. 

In this work torsional vibrations of a gradient elastic bar with micro-stiffness, micro-

inertia and internal viscoelastic damping are studied for the first time. The governing 

equations of motion and all possible boundary conditions (classical and non-classical) are 

obtained by both, the lattice theory of Polyzos and Fotiadis [3] and the continuum theory of 

Mindlin [4]. 

 

4. TORSIONAL VIBRATIONS OF A GRADIENT VISCOELASTIC BAR 
 

Consider a circular cylindrical elastic bar experiencing torsional vibration. It’s 

classical governing equation of motion has the form [32] 

 

 

  
c2 ¶2q(x,t)

¶x2
=

¶2q(x,t)

¶t2
 

 

(4) 

 

where ( , )x t is the torsional angle, 
2 /c G   is the shear wave velocity with G  being the 

shear modulus and ρ the mass density, x is the distance along the axis of the bar and t is the 

time. 

 If the bar material is viscoelastic of the Kelvin-Voigt type, then the above equation 

takes the form [15] 

 

 
2 3 2

2

2 2 2

( , ) ( , ) ( , )x t x t x t
c

x x t t

  


  
 

   
 

 

(5) 
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where /    with δ being the kinematic viscosity in units of Length2/Time and η (equal to 

μ of [2, 12]) being the dynamic viscosity in units of Mass/Time. 

 

 

 In the following, the governing equation of torsional vibrations for the case of a 

cylindrical elastic bar including micro-stiffness and micro-inertia effects is derived by 

employing both a lattice and a continuum model in accordance with the general theories of 

Polyzos and Fotiadis [3] and Mindlin [4], respectively. 

 

4.1 Lattice modeling approach 

 

 Consider a cylindrical bar of length L and cross-section area A, fixed between two 

cylindrical masses with moments J0 and JL at x=0 and x=L, respectively, in units of Mass x 

(Length)2, as shown in Fig. 5. The bar is simulated by a lattice model consisting of equally 

spaced identical, rigid and massless cylindrical particles B(x) with very small thickness 

compared to the lattice size and connected to each other by simple Kelvin-Voigt systems of 

torsional springs and dashpots, as it is illustrated in Fig. 5. The stiffness Kl and damping Cl 

constants of the springs and dashpots, respectively, are defined as 

 

p

l

GI
K

l
  

 

(6) 

 

p

l

I
C

l


  

 

(7) 

 

 

with Ip being the polar moment of inertia of the cross-section in units of Length4 and l the 

lattice spacing, as shown in Fig.4.  

 

 

Figure 5 

 

 

  

Following Polyzos and Fotiadis [3], one can conclude that the influence of micro-

inertia on the torsional vibration of the bar can be taken into account by considering, not 

massless springs as in classical lattice models, but torsional springs with uniformly distributed 

mass moment of inertia j. In other words, microstructure is considered in a discrete manner as 

a large number of very small cylindrical masses with moment of inertia jn, uniformly 

distributed between two adjacent points x and x+l and connected with torsional springs of 

stiffness ke, as it is shown in Fig. 6. The sum of all those masses gives a moment of inertia 

density J that contributes to the kinetic energy of the system. Since the micro-masses are very 

small, the springs ke can be replaced by one with total stiffness Kl. Thus one obtains the lattice 

model of Fig. 5.  

 

 

Figure 6 

 

 

 

Assuming that l is small and that a continuation process is valid, the discrete angular 

kinematic degrees of freedom of the masses lying at the two neighboring unit cells of point x 

can be expressed by the continuous variables ( , )x l t  , ( , )x t and ( , )x l t  .  
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 For a unit cell corresponding to the mass M with torsional angle ( , )x t , as shown in 

Fig.5, the strain energy density for the cell l is given by 

 

 

U
b

=
1

2

1

2
K

l
q (x,t) -q (x - l,t)éë ùû

2

Al
+

1

2
K

l
q (x + l,t) -q (x,t)éë ùû

2

Al

ì

í
ïï

î
ï
ï

ü

ý
ïï

þ
ï
ï

 

 

(8) 

 

Expanding ( , )x l t   around the point x and considering quadratic behavior for ( , )x t , one 

has  

 

 
2

2

2

( , ) 1 ( , )
( , ) ( , )

2

x t x t
x l t x t l l

x x

 
 

 
   

 
 

 

(9) 

 

 

Inserting expressions (6) and (9) into (8) and integrating the resulting equation over the total 

length L of the bar, one obtains the total strain energy in the form 

 

 
22 2 2

2

0 0

1 ( , ) ( , )

2 4

L L

b b p

V

x t l x t
U U dV U Adx GI dx

x x

     
       

     
    

 

(10) 

 

 

 The kinematic energy density is associated only with the torsional motion of the 

springs and their torsional inertia, as the particle C does not experience such a motion. 

Following Polyzos and Fotiadis [3], one can prove that the kinetic energy density for the 

spring of the unit cell l is defined as  

 

 

K
b

=
1

2

1

2
J

¶q - (z,t)

¶t

é

ë
ê

ù

û
ú

0

l

ò

2

dz

Al
+

1

2
J
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¶t

é

ë
ê

ù

û
ú

0

l

ò

2

dz

Al

ì

í

ï
ï
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ï
ï

ü
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þ

ï
ï

 

 

(11) 

 

Where J denotes the torsional moment of inertia of spring micro-material per unit length 

expressed as  

 

 

pJ I   

(12) 
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the coordinate z indicates the distance of each point of the spring from its left end (Fig.6) and 

( , )z t

t

 


 and 

( , )z t

t

 


 represent point angular velocities of the springs with end angular 

velocities 
( , )x l t

t

 


, 

( , )x t

t




 and 

( , )x t

t




, 

( , )x l t

t

 


, respectively. 

 

 

 Since lattice l is very small, 
( , )z t

t

 


 are assumed linear with respect to z, i.e.,  

 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

z t x t x l t z x l t

t t t l t

z t x l t x t z x t

t t t l t

   

   





       
         

      
         

 

 

 

(13) 

 

 

Expanding angular velocities  
( , )x l t

t

 

  
 around the point x and considering linear behavior 

one has 

 

 
2( , ) ( , ) ( , )x l t x t x t

l
t t x t

     
 

   
 

 

(14) 

 

 

Equations (13), in view of Eq. (14), become 

 

 
2 2

2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

z t x t x t x t
z l

t x t t x t

z t x t x t
z

t x t t

   

  





   
  

     

  
 

   

 

 

 

(15) 

 

Thus, substituting Eq. (12) and (15) in (11) and integrating the resulting equation over the 

total length L of the bar, one obtains its total kinetic energy in the form 

 

 
22 2 2

0 0

1 ( , ) ( , )

2 3

L L

b b p

V

x t l x t
K K dV K Adx I dx

t x t

 


    
       

      
    

 

(16) 

 

 The power density absorbed by the two dashpots joined at point x, is for the unit cell 
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Utilizing the asymptotic relations (14) and the relation (7) in (17), the expression of the 

absorbed power density for the unit cell obtains the form 

 
2

21 ( , )

2

p

l

I x t
D

A x t




 
  

  
 

 

(18) 

 

 

Thus the absorbed power density for the whole bar will be 

 
2

2

0 0

1 ( , )

2

L L

l l p

V

x t
D D dV D Adx I dx

x t




 
    

  
    

 

(19) 

 

Denoting derivatives with respect to x and t by primes and overdots, respectively, and 

taking into account the contribution of the attached cylindrical masses with moment of inertia 

J0 and JL (with units of Kgm2) to the kinetic energy of the system, the strain and energy 

densities U, K from (10) and (16), respectively and the absorbed power density D from (19) 

can be written as 
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(20) 

 

The governing equation of torsional motion of the bar as well as all possible 

boundary conditions (classical and non-classical) can be determined with the aid of 

Hamilton’s variational principle valid for a non-conservative system (Kim et al. [33])  

 

 

d (K -U )dt + dW
t
0

t
1

ò dt
t
o

t
1

ò =
¶D

¶ ¢q
d ¢q

0

L

ò
é

ë
ê
ê

ù

û
ú
ú

dt
t
0

t
1

ò  
 

(21) 

 

where U, K and D are provided by (20) and W stands for the work done by external moment 

tractions M and double moment tractions T acting at both ends of the bar. It is easy to see that 
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ï
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ü
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ï
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ò hI
p
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é

ë
ê
ê

ù

û
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ì
í
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ü
ý
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(22) 

 

   
1 1 1

0 0 0

(0, ) (0, ) ( , ) ( , ) (0, ) (0, ) ( , ) ( , )

t t t

t t t

Wdt M t t M L t L t dt T t t T L t L t dt            
 

(23) 

 

The difference K-U can be written on account of (20)1,2 as 
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1

2
I

p
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+
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2æ

è
ç

ö

ø
÷ - G ¢q( )

2

+
l2

4
¢¢q( )

2æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

îï

ü
ý
ï

þï0

L

ò dx

+
1

2
J

0
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+
1

2
J

L
q (L,t)éë ùû

2

=

= F( ¢q , ¢¢q ,q , ¢q )dx
0

L

ò +
1

2
J

0
q (0,t)éë ùû

2

+
1

2
J

L
q (L,t)éë ùû

2

 

 

 

 

(24) 

 

 

Following Lanczos [34] and taking into account that according to Hamilton’s principle 

dq(x,t
0
) = 0

 
and dq(x,t

1
) = 0, one obtains with the aid of (24)  

 

   

d (
t
o

t
1

ò K -U )dt = d F( ¢q , ¢¢q ,q , ¢q )dx dt
0

L
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0
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0
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ö
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ø÷
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¶t
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æ

èç
ö

ø÷
é

ë
ê

ù

û
údq +

¶F

¶ ¢¢q
d ¢q

é

ë
ê
ê

ù

û
ú
ú

o

L

dt
t
0

t
1

ò + J
0
q (0,t)dq(0,t) + J

L
q (L,t)dq (L,t)

 

 

 

 

 

 

(25) 

 

 

Thus, on account of (22) – (25), Eq. (21) yields 
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ê
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é
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è
ç
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ø
÷ d ¢q

é

ë
ê
ê

ù

û
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ú

o

L

dt
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t
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+ T (0,t)d ¢q (0,t) + T (L,t)d ¢q (L,t)dt{ }dt
t
0

t
1

ò = 0

 

 

  

 

 

 

 (26) 

 

The vanishing of the first integral in (26) provides the equation of torsional motion of 

the bar in the form 

 

 

G ¢¢q -
l2

4
¢¢¢¢q

æ

è
ç

ö

ø
÷ +h ¢¢q = r q -

l2

3
¢¢q

æ

è
ç

ö

ø
÷  

 

   

(27) 

 

or 
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2 2 2 3 2 2 2
2

2 2 2 2 2

( , ) ( , ) ( , )
1 1

4 3

l x t x t l x t
c

x x x t x t

  


         
        

          
 

 

  (28) 

 

 

 

The vanishing of the second and third integrals in (26) provides the classical boundary 

conditions indicating that either (0, )t  and ( , )L t  are prescribed or M(0, t) and M(L, t) of 

the form 

 

 

 

 

GI
p

¢q -
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4
¢¢¢q

æ

è
ç

ö

ø
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¢q

é

ë
ê
ê

ù

û
ú
ú
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- J
0
q (0,t) = -M (0,t)

GI
p

¢q -
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4
¢¢¢q

æ

è
ç

ö

ø
÷ + rI

p

l2

3
¢q +hI

p
¢q

é

ë
ê
ê

ù

û
ú
ú

x=L

+ J
L
q (L,t) = M (L,t)) 

 

 

   

 

 

(29) 

 

are prescribed, or q(0,t) and M(L, t) are prescribed, or finally q(L,t)  and M(0, t) are 

prescribed. 

 

Finally, the vanishing of the fourth and fifth integral of (26) provides the non-classical 

boundary conditions indicating that either (0, )t  and ( , )L t  are prescribed or (0, )T t  and 

( , )T L t  
of the form. 

 
2

2

(0, ) (0, )
4

( , ) ( , )
4

p

p

l
GI t t

l
GI L t L t





  

  

 

 

   

(30) 

 

are prescribed or (0, )t  and ( , )T L t  are prescribed, or finally ( , )L t  and (0, )T t  are 

prescribed. 

 The just described lattice model is able to explain rather the behavior of a resonant 

column made of repulsive particles for which micro-inertia is greater than micro-stiffness 

(l/√3 > l/2), than of attractive ones. In the case of fine-grained materials with attractive 

particles, non-local interaction between the particles appears leading to a low density 

formation of the grain skeleton. This property can be simulated in the aforementioned lattice 

model by considering “non-local” torsional springs 
2lK without micro-inertia effects 

connecting the particle ( )xB with the particles ( 2 )x lB  and ( 2 )x lB  , as it is illustrated in Fig. 7. 

 

 

Figure 7 

 

 

 In that case, taking into account the potential energy density of the non-local springs of 

stiffness 
2lK in the above procedure, the micro-stiffness parameter l2/4 is replaced by the 

expression 

2
2

4

l
b  where 
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b2 =
1+16

G
n

G

1+ 4
G

n

G

, 

 

 

(31) 

 

with G
n
denoting the shear modulus corresponding to the nonlocal springs of stiffness 

2lK . 

From (31) it is apparent that for G
n

/ G > 0.03125 ,the micro-stiffness parameter 

2
2

4

l
b  for 

attractive particles is greater than the micro-inertia parameter l2/3 or   b > 2 / 3 = 1.56 . 

 

4.2 Continuum modeling approach 

 

 The above results can also be derived by employing directly the simplified Mindlin’s 

[4] form II version of gradient elasticity with two microstructural constants, as described in 

Section 3, which is a continuum theory. For a gradient viscoelastic circular cylindrical bar of 

length L, cross-sectional area A, mass density ρ, shear modulus G, Poisson ratio ν=0 and 

microstructural stiffness and inertia constants g and h, respectively, one can derive with the 

aid of [4, 32] its strain energy, kinetic energy and energy of dissipation as follows: 

Employing a Cartesian system of axes (x, y, z) with x along the bar length and y and 

z on a cross-section of the bar, one has that under torsional deformation the only nonzero 

components of Cauchy and double stress tensors τ  and μ  obtained from Eqs. (2) are of the 

form 

 

t
xy

= 2Ge
xy

, t
xz

= 2Ge
xz

m
xxy

= g 2¶t
xy

/ ¶x, m
xxz

= g2¶t
xz

/ ¶x
 

 

  (32) 

 

where the strains xy  and xz  are expressed in terms of the torsion angle θ as [32] 

 

2 ( / )

2 ( / )

xy

xz

z x

y x

 

 

   

  
 

 

  (33) 

 

The nonzero displacement components uy and uz along the y and z axes, respectively, are 

given in terms of the torsion angle θ as [32] 

 

 

y

z

u z

u y





 


 

 

  (34) 

 

Strain gradients and displacement gradients can be obtained from (33) and (34) in the form 

 

   2 2 2 22 / ( / ), 2 / ( / )

/ ( / ), / ( / )

xy xz

y z

x z x x y x

u x z x u x y x

   

 

          

          
 

 

  (35) 

 

 Thus, the strain energy of the bar can be obtained as 

 

 
1

2
2

xy xy xz xz xxy xy xxy xz

V

U dV             
 

  (36) 
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where V indicates the bar volume and primes indicate differentiation with respect to x. 

Substituting stresses in terms of strains with the aid of (32) in Eq. (36), one obtains 

 

 

       
2 22 22 21

2 2 2 2 2
2

xy xz xy xz

V

U G G Gg Gg dV        
    

 

  (37) 

 

Substituting strains and their gradients in (37) in terms of the torsion angle derivatives, as 

given by (33) and (35)1,2 one receives 

 

   
2 22

0

1

2

L

pU GI g dx    
   

 

  (38) 

 

where Ip is the polar moment of inertia in the form 

 
2 2( )p

A

I y z dA    

  (39) 

 

The above expression for U is exactly the same with that in (20)1 provided that g = l/2. 

 The kinetic energy of the bar can be obtained as 

 

   

K =
1

2
ru

y

2 + ru
z

2( ) + h2 r( ¢u
y
)2 + r( ¢u

z
)2( )é

ë
ù
û

V

ò dV  
 

  (40) 

 

where overdots indicate differentiation with respect to time t and the terms inside the integral 

which are multiplied by h2 represent the effect of micro-inertia. Substituting velocities and 

velocity gradients in (40) by their expressions in (34) and (35)3,4 after differentiation with 

respect to time t, one obtains Eq. (40) in the form  

 

K =
1

2
rI

p
q( )

2

+ h2
¢q( )

2é

ëê
ù

ûú
0

L

ò dx  
 

  (41) 

 

The above expression for K, augmented by the inertial energies of the two end masses, is the 

same as that in (20)2 provided that h = l/√3. 

 The dissipation energy in the bar is due to the presence of viscous effects, which are 

assumed not to be influenced by the material microstructure. For the simple case of the 

Kelvin-Voigt viscoelastic model, the viscous components of the stresses 
v v

xy xzand   are 

assumed to be of the form 

 

t
xy

v = 2he
xy

, t
xz

v = 2he
xz

  

  (42) 

and thus the dissipation energy in the bar takes the form 

 

D =
1

2
2 t

xy

v e
xy

+t
xz

v e
xz( )

V

ò dV  
 

  (43) 

 

Substituting in (43) viscous stresses and velocities of strain in terms of derivatives of θ with 

the aid of (42) and (33), one can receive D in the form 

 

D =
1

2
hI

p
¢q( )

2

dx
0

L

ò  
 

  (44) 
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The above expression is exactly the same as the one in (20)3  obtained by the lattice theory. 

 Thus, the continuum approach provides the same expressions for U, K and D 

obtained by the lattice theory approach provided that the micro-stiffness and micro-inertia 

coefficients g and h are equal to l/2 and l/√3, respectively, where l is the lattice spacing.  

With these U, K and D one can employ Hamilton’s variational method as before and obtain 

the same governing equation (27) and boundary conditions (29) and (30) with l2/4 and l2/3 

replaced by g2 and h2, respectively. 

 In conclusion, the governing equation of torsional motion of a circular cylindrical bar 

with end masses and gradient viscoelastic material behavior is of the form 

 

c2 1- g2 ¶2

¶x2

æ

è
ç

ö

ø
÷

¶2q (x,t)

¶x2

æ

è
ç

ö

ø
÷ +d

¶3q(x,t)

¶x2¶t
= 1- h2 ¶2

¶x2

æ

è
ç

ö

ø
÷

¶2q (x,t)

¶t2

æ

è
ç

ö

ø
÷  

 

  (45) 

 

 

where in view of Eqs. (28) and (31)  

 
2 2

2 2

/ 4

/ 3

g l

h l




 

 

  (46) 

 

for repulsive particles and 

 

g 2 = b2l2 / 4

h2 = l2 / 3
 

 

  (47) 

 

for attractive particles. This equation is accompanied by the classical and non-classical 

boundary conditions (29) and (30), respectively, with l2/4, b2l2/4 and l2/3 replaced by g2 and h2 

as indicated by (46) and (47). One can observe that i) Eqs. (46) and (47) provide expressions 

for determining the phenomenological coefficients g and h in terms of the geometry of the 

microstructure of both repulsive and attractive particles and ii) Eq. (45) reduces to the 

classical form of Eq. (5) for g = h = 0. 

 At this point it is interesting to study the propagation of harmonic with time torsional 

waves in a gradient elastic bar in order to see the influence of the two non-classical constants 

g and h on its torsional motion. Thus, assuming torsional waves of the form 

 

q(x,t) = Aei(kx-w t )   (48) 

 

where A is the amplitude, k the wave number and ω the circular frequency, Eq. (45) with δ = 

0 takes the form 

 

1+ h2k 2( )w 2 -
G

r
k 2 1+ g2k 2( ) = 0  

 

  (49) 

 

Solving Eq. (49) for ω, one can compute the phase velocity of the propagation V of the 

torsional waves in the bar in the form 

 

   
1/2

2 2 2 2/ 1 / 1V k c g k h k     
 

 
 

  (50) 

 

where /c G   is the classical wave propagation velocity. Equation (50) is the dispersion 

relation indicating variation of V with k or ω. For g = h = 0 (classical case) one obtains from 
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(50) V=c, indicating that there is no dispersion and  the velocity of propagation is constant. 

Figure 8 depicts the variation of V versus k for various combinations of g and h. For g > h 

one has the case of attractive particles for which V > c, while for g < h one has the case of 

repulsive particles for which V < c.  These results are the same with those observed for wave 

propagation in an infinitely extended gradient elastic medium or in a bar under axial motion 

[10]. 

  

5. FREE TORSIONAL VIBRATION OF A GRADIENT VISCOELASTIC BAR 

 

Consider the governing equation (45) of torsional vibrations of the gradient viscoelastic bar of 

Fig. 4 subject to the classical and non-classical boundary conditions (29) and (30) with M=0, 

T=0 and l2/4 and l2/3 being replaced by g2 and h2, respectively. Assuming a time harmonic 

solution of the form  

 

q(x,t) =q (x)eiw t  (51) 

 

where ( )x  represents the amplitude of the torsional angle, ω the circular frequency of 

vibration and 1i   , one can obtain the governing equation of motion and the associated 

boundary conditions in the form 

 

-c2g2
¢¢¢¢q (x) + (c2 + iwd - h2w 2) ¢¢q (x) +w 2q (x) = 0 (52) 

 

GI
p

¢q (0) - g2
¢¢¢q (0)é

ë
ù
û -w 2rI

p
h2

¢q (0) + iwhI
p
¢q (0) = -J

0
w 2q (0)  (53) 

 

GI
p

¢q (L) - g2
¢¢¢q (L)é

ë
ù
û -w 2rI

p
h2

¢q (L) + iwhI
p
¢q (L) = J

L
w 2q (L)  (54) 

 

GI
p
g2

¢¢q (0) = 0
 

GI
p
g2

¢¢q (L) = 0  

 

(55) 

 

Introducing the dimensionless parameters 

 

   

g = g / L , h = h / L, x = x / L, a = w L / c

D = d / (cL), J
0

= rLI
p

/ J
0
, J

L
= rLI

p
/ J

L

 
(56) 

 

one can rewrite Eqs. (52)-(55) in the form  

 

-g2
¢¢¢¢q (x) + (1+ iaD - h2a 2) ¢¢q (x) +a 2q (x) = 0 (57) 

 

-g2
¢¢¢q (0) + (1+ iaD - h2a 2) ¢q (0) = - a 2 / J

0( )q (0)  (58) 

 

-g2
¢¢¢q (1) + (1+ iaD - h2a 2 ) ¢q (1) = - a 2 / J

L( )q (1) (59) 

 

¢¢q (0) = ¢¢q (1) = 0  (60) 

 

The solution of Eq. (57) has the form 

 

q (x) = A
1
sin px + B

1
cos px + A

2
sinhqx + B

2
coshqx  (61) 
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where  

 

p =
-1- ig + ha 2 + (1+ ig - ha 2 )2 + 4g2a 2

2g2
 

(62) 

 

q =
1+ ig - h2a 2 + (1+ ig - h2a 2 )2 + 4g2a 2

2g2
 

(63) 

 

with γ being equal toa D = wd / c2 = wh / G  for frequency dependent or viscous damping and 

equal to 2β (β=constant damping coefficient) for frequency independent or hysteretic 

damping. 

For the case of a column fixed at its base, one has J
0

= 0 and J
L

>1 . For this case the 

boundary conditions (58)-(60) reduce to 

 

¢¢q (0) = ¢¢q (1) =q (0) = 0 (64) 

 

-g2
¢¢¢q (1) + (1+ ig - h2a 2) ¢q (1) = a 2 / J

L( )q (1)  (65) 

 

One can now obtain numerical results for the following eight cases corresponding to various 

combinations of values of the parameters g , h and : 

 

5.1 Classical elasticity without damping 

 

In this case one has g = h = g = 0  and thus the governing equation (57) and boundary 

conditions (64) and (65) become 

 

¢¢q (x) +a 2q (x) = 0 (66) 

 

 2(0) 0, (1) / (1)LJ      (67) 

 

leading to the frequency equation 

 

tan LJ    (68) 

 

which for 10LJ   can provide the first four eigenfrequencies, as shown in Table 1. 

 

Table 1 

 

 

5.2 Classical elasticity with damping 

 

In this case one has g = h = 0 , 0   
and thus the governing equation (57) and boundary 

conditions (64) and (65) become 

 

(1+ ig ) ¢¢q (x) +a 2q (x) = 0 (69) 
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 2(0) 0, (1 ) (1) / (1)Li J         

(70) 

 

leading to the frequency equation 

 

tan 1
(1 )

LJ i
i


 



 
  

  

 
 

(71) 

 

which for 10LJ   can provide the first four eigenfrequencies for the case of 2   

(hysteretic damping), as shown in Table 2. 

 

Table 2 

 

 

 

 

5.3 Gradient elasticity with micro-inertia and without damping 

 

In this case one has h ¹ 0 , g = g = 0and thus the governing equation (57) and boundary 

conditions (64) and (65) become 

 

(1- h2a 2) ¢¢q (x) +a 2q (x) = 0  (72) 

 

q (0) = 0, (1- h2a2) ¢q (1) = a 2 / J
L( )q (1) (73) 

 

leading to the frequency equation 

 

a tan
a

(1- h2a 2 )

æ

è
ç
ç

ö

ø
÷
÷

= J
L

1- h2a 2  

 

(74) 

 

It is apparent from (72) that vibration occurs only when 1- h2a2 > 0 or a <1/ h . Thus, for the 

typical values of h = 0.01and h = 0.05one has that 100a   and 20a  , respectively. Table 3 

shows the first four eigenfrequencies for this case when 10LJ 
 
and h = 0.0 , h = 0.01 ,

h = 0.05, while Fig. 9 depicts the first four natural frequencies versus h . One can observe 

from that figure that for increasing values of h , the frequencies decrease, especially for 

higher modes. This is because micro-inertia effects are here significant and are associated 

with the much more dense arrangement of repulsive particles. 
 

 

Table 3 

 

 

Figure 9 

 

5.4 Gradient elasticity with micro-inertia and damping 

 

In this case one has h ¹ 0 , 0  , g = 0and thus the governing equation (57) and boundary 

conditions (64) and (65) become 
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(1+ ig - h2a 2) ¢¢q (x) +a 2q (x) = 0 (75) 

 

q (0) = 0, (1+ ig - h2a 2) ¢q (1) = a 2 / J
L( )q (1) (76) 

 

leading to the frequency equation 

 

a tan
a

(1+ ig - h2a 2)

æ

è
ç
ç

ö

ø
÷
÷

= J
L

1+ ig - h2a 2  

(77) 

 

For 10LJ   and h = 0.0, h = 0.01, h = 0.05, Table 4 provides the first four eigenfrequencies 

for 2 0.01  . 

 

Table 4 

 

 

 

5.5 Gradient elasticity with micro-stiffeness and without damping 

 

In this case one has g ¹ 0 , h = g = 0 and thus the governing equation (57) and boundary 

conditions (64) and (65) become 

 

-g2
¢¢¢¢q (x) + ¢¢q (x) +a 2q (x) = 0 (78) 

 

¢¢q (0) = ¢¢q (1) =q (0) = 0 (79) 

 

-g2
¢¢¢q (1) + ¢q (1) = a 2 / J

L( )q (1) (80) 

 

leading to the frequency equation 

 

pcos p(g2 p2 +1) +
p2

q

sin pcosh q

sinh q
(-g2q2 +1) -

a 2

J
L

sin p(1+
p2

q2
) = 0 

 

(81) 

 

Table 5 gives the first four eigenfrequencies for this case for 10LJ   and g = 0.0, g = 0.01

g = 0.05, while Fig. 10 depicts the first four natural frequencies versus g . One can observe 

from that figure that for increasing values of g , the frequencies increase, especially for 

higher modes. This is because micro-stiffness effects are here significant and are associated 

with the much less dense but stiffer arrangement of attractive particles. 

 

 

Table 5 

 

 

Figure 10 

 

5.6 Gradient elasticity with micro-stiffness and damping 

 

In this case one has g ¹ 0 , 0  , h = 0  and thus the governing equation (57) and boundary 

conditions (64) and (65) become 
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-g2
¢¢¢¢q (x) + (1+ ig ) ¢¢q (x) +a 2q (x) = 0  (82) 

 

¢¢q (0) = ¢¢q (1) =q (0) = 0 (83) 

 

-g2
¢¢¢q (1) + (1+ ig ) ¢q (1) = a 2 / J

L( )q (1) (84) 

 

leading to the frequency equation 

 

pcos p(g2 p2 +1+ ig ) +
p2

q

sin pcosh q

sinh q
(-g2q2 +1+ ig ) -

a 2

J
L

sin p(1+
p2

q2
) = 0  

 

(85) 

 

For 10LJ   and g = 0.0 g = 0.01, g = 0.05, Table 6 gives the first four eigenfrequencies for

2 0.01  . 

 

Table 6 

 

 

 

5.7 Gradient elasticity with micro-inertia, mico-stiffness and without damping 

 

In this case one has g ¹ 0 , 0  , h ¹ 0  and thus the governing equation (57) and boundary 

conditions (64) and (65) become 

 

-g2
¢¢¢¢q (x) + (1- h2a2) ¢¢q (x) +a 2q (x) = 0 (86) 

 

¢¢q (0) = ¢¢q (1) =q (0) = 0 (87) 

 

-g2
¢¢¢q (1) + (1- h2a2) ¢q (1) = a 2 / J

L( )q (1) 

 

(88) 

 

leading to the frequency equation 

 

pcos p(g 2 p2 +1- h2a 2 ) +
p2

q

sin pcosh q

sinh q
(-g 2q2 +1- h2a 2 )

-
a 2

J
L

sin p(1+
p2

q2
) = 0

 

 

 

(89) 

 

For 10LJ  , Tables 7(a) and 7(b) provide the first four eigenfrequencies for h = 0.01and 

g = 0.01and g = 0.05 and for g = 0.01and h = 0.01and h = 0.05, respectively. 

 

Table 7 

 

 

5.8 Gradient elasticity with micro-inertia, micro-stiffness and damping 

 

In this case one has g ¹ 0 , 0  , h ¹ 0  and thus the governing equation (57) and boundary 

conditions (64) and (65) lead to the frequency equation 
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pcos p(g 2 p2 +1+ ig - h2a 2 ) +
p2

q

sin pcosh q

sinh q
(-g 2q2 +1+ ig - h2a 2 )

-
a 2

J
L

sin p(1+
p2

q2
) = 0

 

 

 

(90) 

 

Tables 8 provides the first four eigenfrequencies for 10LJ   and 2β=0.01 for the following 

combinations of   g and  h :
   g = h = 0.01, g = 0.01and    h = 0.05and   g = 0.05and   h = 0.01. 

 

Table 8 

 

 

6. RESONANT FREQUENCY SHIFTING AND ELASTIC CONSTANTS 
 

In Section 2, the resonant column test results for a fine-grained material (α-Al2O3 

powder) as obtained by Richter [2] were outlined. In this Section an effort is made to explain 

those results by utilizing the theoretical results presented in Section 5. More specifically, the 

observed in [2] (see Figs 3 and 4 as examples) shifting of the theoretically computed natural 

frequencies to the left and to the right of the experimentally obtained ones for the cases of 

attractive (pH=9.1) and repulsive (pH=4.0) particles, respectively, will be explained on the 

basis of the results of the gradient viscoelasticity theory. It will be shown that this 3-10% 

frequency shifting is the result of the inadequacy of the classical theory of viscoelasticity to 

take into account microstructural effects, which appear in granular materials, like the α-Al2O3 

powders [4]. In other words, it will be shown here that there are differences 3-10% between 

the natural frequency values of the gradient and classical theories of viscoelasticity, thereby 

indicating that the results of gradient viscoelasticity are almost the same with those of the 

experiments. 

Consider, as a simple,yet representative example, the cases 5.4 and 5.6 corresponding 

to the results of Tables 4 and 6 for which one has g = 0 , h = 0.05, 2 0.01  and g = 0.05, 

h = 0 , 2 0.01  , respectively. The results of these two cases will be compared against those 

of case 5.2 (Table 2) for which g = h = 0 , 2 0.01  . One should notice that only hysteretic 

damping is considered here as the only realistic one for granular materials, as explained in 

Section 2. Since for the comparison in [2] (see Figs. 3 and 4) the resonance frequency of the 

first mode of the tests and that of the classical theory of viscoelasticity coincide and the 

observed shifting refers to the higher modes, the results of Tables 4 and 6 are modified in 

order to agree with this fact on the assumption that the test results are almost the same with 

those of the gradient viscoelasticity theory. 

 Table 9 shows the first three natural frequencies (rounded to the first three decimal 

digits) for cases 5.2, 5.4 and 5.6 before (a) and after (b) modification. One can observe from 

the second row of Table 9.b that 4.213<4.306 and 6.802<7.228 with corresponding shifts 

2.21% and 6.26%, respectively. This is the case of repulsive particles (pH=4.0) with αi of 

tests ≈ gradient theory < αi of classical theory. For this case g = 0and h = 0.05 indicating that 

there are only micro-inertia effects.  

 

Table 9 
 

Indeed for repulsive particles one has a density increase and hence inertia increase. One can 

also observe from the third row of Table 9.b that 4.379>4.306 and 7.601>7.228 with 

corresponding shifts of 1.67% and 4.91%, respectively. This is the case of attractive particles 

(pH=9.1) with αi of tests ≈ gradient theory > αi of classical theory. For this case g = 0.05and 

   h = 0  indicating that there are only micro-stiffness effects. Indeed for attractive particles one 
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has a density decrease and hence inertia decrease (zero in this case). One can reach the same 

conclusions for the more general case 5.8 with g = 0.01, h = 0.05 and g = 0.05, h = 0.01and 

thus explain again the natural frequency shifting phenomenon. 

The above argument that the resonant frequency shifting can be attributed to micro-

structural effects was essentially a qualitative one. In the following, an attempt will be made 

to use the experimentally obtained results and on the basis of the gradient viscoelastic theory 

developed in Section 4, determine the elastic constants G, g and h, thereby indirectly 

providing a quantitative proof of the appearance of this frequency shifting as a result of 

microstructural effects and simultaneously suggest a method for the experimental 

determination of these constants. To this end one first has to determine the mass densities ρa 

and ρr of the attractive and repulsive particles, respectively. From Richter [2] one has that the 

void ratios ea and er for attractive and repulsive particles are 1.4 and 0.54, respectively. Thus, 

since the particle density ρp = 3900 kg/m3 [2] and the mass density ρa,r = ρp / (1 + ea,r), one has 

ρa = 1625 kg/m3 and ρr = 2532 kg/m3. The hysteretic damping for the case of confining 

pressure p’ = 20kPa is from Richter [2] 2β = 0.023 and 2β = 0.026 for attractive and repulsive 

particles, respectively.  

Using the values of J0, JL and Ip of Section 2 and the above computed values of mass 

densities ρa and ρr, one can obtain from (56)6,7 

 

J
oa

= 0.02772337477, J
La

= 1.86063057823

J
or

= 0.043241490, J
Lr

= 2.90211561888
 

 

 

(91) 

for attractive and repulsive particles, respectively. 

 Consider first the case of attractive particles. According to the method used in 

practice for the experimental determination of G, one measures the first resonant frequency f1 

and computes G from the relation G=ρc2, where ρ=1625 Kg/m3 and c=ω1L/α1= 2πf1L/α1 (Eq. 

(56)4) with α1 being the first root of the frequency equation for the case of classical elasticity 

without damping reading 

 

a2 - J
o
J

L( ) tana = a(J
o
+ J

L
)  (92) 

 

and obtained from Eq. (61) under boundary conditions (58)-(60) with
   g = h = g = 0 . With 

f1=290 Hz (Fig. 3) and J0a, JLa values those of (91)1,2, one has α1=1.07337 and hence 

G1=46.82 MPa. Usig now the measured resonant frequencies of the next three modes f2=1015 

Hz, f3=1815 Hz and f4=2670 Hz (Fig. 3) in conjunction with the roots α2=3.62361, 

α3=6.56364 and α4=9.61874 of Eq. (92), one obtains G2=50.33 MPa, G3=49.05 MPa and 

G4=49.43 MPa, indicating that there is a mode effect increasing G by up to 7.5%. 

Since the measured natural frequencies include the effect of damping, the correct 

determination of G should be done on the basis of αi (i=1-4) not obtained from (92) but from 

the frequency equation for the case of classical elasticity with damping, i.e., from  

 
2

tan ( )
1 1 1

o L o L

a a a
J J J J

i i i  

  
           

 
 

(93) 

 

obtained from Eq. (61) under boundary conditions (58)-(60) with    g = h = 0 . With J
oa

and 
  
J

La

values those of (91)1,2 and g = 0.023 , one can obtain from (93) the real part of α’s as 

α1=1.07344, α2=3.62385, α3=6.56407 and α4=9.61937 resulting in G1=46.82 MPa, 

G2=50.327 MPa, G3=49.04 MPa and G4=49.42 MPa and indicating that there is practically no 

effect of damping when determining the shear modulus G for any mode. 

Consider now the case of gradient elasticity with micro-stiffness and damping with 

frequency equation the one obtained from Eq. (61) under boundary conditions (58)-(60) with 
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h = 0, g = 0.023 and J
oa

and 
  
J

La
those of (91)1,2. This is a characteristic case for attractive 

particles and on the basis of the measured resonant frequencies f1=290 Hz, f2=1015 Hz, 

f3=1815 Hz and f4=2670 Hz (Fig. 3) one can obtain the following values of G and g:  

 
G = 46.50 MPa, g = 0.0085m

  

(94) 

G = 46.52 MPa, g = 0.0035m

  

(95) 

G = 46.52 MPa, g = 0.0026m

 

(96) 

 

by solving for c=2πfL/α and g = g / L  the systems of  two nonlinear algebraic equations 

resulting from the above-mentioned frequency equation in turn for f1 and f2, f1 and f3 and f1 

and f4, respectively. It is observed that the effects of the micro-stiffness consist of practically 

providing a single value of G, very close to the one obtained in the classical way, and 

independently of the modes considered and of determining values of g decreasing with 

increasing modes as a result of grain rearrangement at higher modes. 

 Consider now the case of repulsive particles for which the measured resonant 

frequencies are f1=350 Hz, f2=1080 Hz, f3=1900 Hz and f4=2800 Hz (Fig. 4), the mass density 

ρ=2532 Kg/m3, the hysteretic damping γ=0.026 and the values of J
or

and 
 
J

Lr
 are given by 

(91)3,4. Working exactly as in the previous case of attractive particles, one can obtain the 

following pairs of α and G for the first four modes associated with classical elasticity without 

damping 

 

  

a
1
= 1.21113, G

1
= 83.48 MPa

a
2

= 3.8046, G
2

= 80.54 MPa

a
3

= 6.69848, G
3
= 80.42 MPa

a
4

= 9.71939, G
4

= 82.96 MPa
 

 

 

 

(97) 

and with damping 

 

  

a
1
= 1.21123, G

1
= 83.46 MPa

a
2

= 3.80492, G
2

= 80.53 MPa

a
3

= 6.69904, G
3

= 80.41 MPa

a
4

= 9.72021, G
4

= 82.94 MPa
 

 

 

 

(98) 

 

One can observe from (97) and (98) that there is no damping effect but there is a mode effect 

(up to 6.23%) as far as the determination of G in the classical way is concerned, exactly as in 

the case of attractive particles. 

 Considering now for repulsive particles the case of gradient elasticity with micro-

inertia and damping with frequency equation the one obtained from Eq. (61) under boundary 

conditions (58)-(60) with g = 0, g = 0.026 and J
or

and 
 
J

Lr
 those of (91)3,4. Working as in 

the case of attractive particles, one can obtain the following values of G and h:    

 
G = 83.70 MPa, h = 0.0053m

  

(99) 

G = 83.57 MPa, h = 0.0030m

  

(100) 

G = 83.47 MPa, h = 0.0008m

 

(101) 
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for the combinations of f1 and f2, f1 and f3, f1 and f4, respectively. It is observed that the effects 

of micro-inertia consist of practically providing a single value of G, very closed to the one 

obtained in the classical way, and independently of the modes considered and of determining 

values of h decreasing with increasing modes as a result of grain rearrangements at higher 

modes, as in the case of attractive particles. 

 In conclusion, through the experimental results of Figs 3 and 4 [2], it has been 

possible with the use of the gradient elastic theory to (i) determine the microstructural 

constants g and h for attractive and repulsive particles as g=0.0095-0.0026 m and h=0.0053-

0.0008 m leading with the aid of relations (46) and (47) to lattice spacing l=0.012-0.0033 m 

and l= 0.0092-0.0014 m for attractive and repulsive particles, respectively; (ii) determine the 

shear modulus G=46.52 MPa and G=83.58 MPa for attractive and repulsive particles, 

respectively, very close to its values obtained in the classical way. 

 Finally, consider the most general case of having to determine all three elastic 

constants G, g and h of a fine-grained a-Al2O3 material from resonant column test results, like 

those of Figs 3 and 4 for attractive and repulsive particles, respectively. In order to 

accomplish this, one has to form the frequency equation coming from the general solution 

(61) under the boundary conditions (58)-(60), consider ai=2πfiL/c, where fi are the three of the 

measured resonant frequencies and solve the resulting system of three nonlinear algebraic 

equations for c,   g  and   h  from which G=ρc2,   g = gL  and   h = hL can be evaluated.  

 Thus, for the case of attractive particles and use of the first three measured resonant 

frequencies of Fig. 3 one can determine 

 

  
G = 46.5 MPa, g = 0.004m h = 0.0005m

  

(102) 

Use of the first, third and fourth resonant frequencies of Fig.3 leads to    

 
G = 46.5 MPa, g = 0.003m, h = 0.0005m

  

(103) 

For the case of repulsive particles one can determine  

 
G = 83.67 MPa, g = 0.0008m, h = 0.004m

  

(104) 

by using the first three measured resonant frequencies of Fig. 4 and 

 

  
G = 83.5 MPa, g = 0.0001m, h = 0.0015m

  

(105) 

by using the first, third and fourth measured resonant frequencies of Fig. 4. One can observe 

from both cases of attractive and repulsive particles that (i) the shear modulus G is 

independent of the two used frequency combinations and close to the classically obtained 

value and (ii) there is not a single solution of the nonlinear system of equations for g and h for 

both measured frequency combinations because at higher frequencies the microstructure of 

the material changes due to grain rearrangements.  

  

7. CONCLUSIONS 

 

On the basis of the preceding developments, one can draw the following conclusions: 

 

1) A gradient viscoelastic theory with micro-stiffness and micro-inertia has been developed 

for the description of torsional vibrations of a viscoelastic bar with microstructure. 
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2) The governing equations of motion and the classical and non-classical boundary conditions 

of the problem have been derived both by a lattice theory and a continuum gradient 

viscoelastic theory. 

 

3) Free torsional vibrations of a viscoelastic microstructured bar have been studied and the 

frequency equations for eight cases involving various combinations of the parameters g 

(micro-stiffness), h (micro-inertia) and 2β (hysteretic damping) have been presented and 

solved for the first five eigenfrequencies. 

 

4) Use of the above theory and results enables one to explain the observed during tests natural 

frequency shift to the left or to the right of the classical frequency values for the cases of 

repulsive and attractive particles, respectively, of fine-grained equivalent soil models. 

 

5) A method for determining the material parameters g, h and the shear modulus G of a fine-

grained material by measuring the first four resonance frequencies of torsional vibrations of a 

column made of this material has been proposed. 
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