1,298 research outputs found

    Which space? Whose space? An experience in involving students and teachers in space design

    Get PDF
    To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the opportunity to do so in a workshop environment. Over a number of workshops, participants were encouraged to critique a space prototype and to re-design it according to their own views and vision of learning spaces to optimise pedagogical encounters. The findings suggest that the active involvement of students and teachers in space design endows participants with the power of reflection on the pedagogical process, which can be harnessed for the actual creation and innovation of learning spaces

    High-performance functional renormalization group calculations for interacting fermions

    Get PDF
    We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the tt,tt' Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.Comment: 26 pages, 9 figure

    SAR data and field surveys combination to update rainfall-induced shallow landslide inventory

    Get PDF
    The Campania region has been recurrently hit by severe landslides in volcanoclastic deposits. The city of Naples, and in particular the Camaldoli and Agnano hills (Phlegraean Fields), also suffered several landslide crises in weathered volcanoclastic rocks as a consequence of intense rainfalls or wildfires. To identify slope failures phenomena occurred in the winter season 2019–2020 an innovative procedure has been proposed. The purpose of this procedure is to highlight areas where major land cover changes occurred within our area of study, which can be potentially related to mass movements. The amplitude of spaceborne SAR images has been exploited for the change detection analysis and the output derived from the segmentation procedure has been compared with field observations. The amplitude-based method has been already applied in the detection of landslides, but never on the event with limited extensions, such as for this application. The achieved outcomes allowed the mapping of 62 new landslides that have been used to update the current landslide inventory database. This type of information is expected to help decision-makers with land planning and risk assessment

    Hybrid CPU-GPU generation of the Hamiltonian and overlap matrices in FLAPW methods

    Get PDF
    In this paper we focus on the integration of high-performance numerical libraries in ab initio codes and the portability of performance and scalability. The target of our work is FLEUR, a software for electronic structure calculations developed in the Forschungszentrum J\"ulich over the course of two decades. The presented work follows up on a previous effort to modernize legacy code by re-engineering and rewriting it in terms of highly optimized libraries. We illustrate how this initial effort to get efficient and portable shared-memory code enables fast porting of the code to emerging heterogeneous architectures. More specifically, we port the code to nodes equipped with multiple GPUs. We divide our study in two parts. First, we show considerable speedups attained by minor and relatively straightforward code changes to off-load parts of the computation to the GPUs. Then, we identify further possible improvements to achieve even higher performance and scalability. On a system consisting of 16-cores and 2 GPUs, we observe speedups of up to 5x with respect to our optimized shared-memory code, which in turn means between 7.5x and 12.5x speedup with respect to the original FLEUR code

    Quality of Life, Wishes, and Needs in Women with Gestational Diabetes: Italian DAWN Pregnancy Study

    Get PDF
    The DAWN (Diabetes Attitudes, Wishes and Needs) study is a survey promoted by the International Diabetes Federation to recognize the perceptions and attitudes of people suffering from diabetes mellitus. In this context, we evaluated the quality of life of Italian and immigrant women with gestational diabetes mellitus (GDM). Information was gathered using a structured questionnaire for patients' self-compilation. In a 3-month period, a 51-item questionnaire was submitted to 198 Italians and 88 immigrants (from 27 different foreign nationalities). Italian women were older and had higher education than the immigrants. 60% of the Italians and 38% of the immigrants had a family history of diabetes mellitus. In both groups, the diagnosis of GDM caused anxiety; one-third of women feared their child could contract diabetes at delivery and/or have congenital malformations. Some women had trouble in following treatment regimens: the major concern being dietary advice and blood glucose testing. Most women were satisfied (34%) or highly satisfied (60%) with the quality of care, although the degree of cooperation between diabetes specialists and gynaecologists was considered sometimes unsatisfactory. In order to optimize maternal and foetal outcomes, educational projects and improved communication between patients and the healthcare provider team are recommended

    A practical algorithmic approach to mature aggressive B cell lymphoma diagnosis in the double/triple hit era. Selecting cases, matching clinical benefit. A position paper from the Italian Group of Haematopathology (G.I.E.)

    Get PDF
    An accurate diagnosis of clinically distinct subgroups of aggressive mature B cell lymphomas is crucial for the choice of proper treatment. Presently, precise recognition of these disorders relies on the combination of morphological, immunophenotypical, and cytogenetic/molecular features. The diagnostic workup in such situations implies the application of costly and time-consuming analyses, which are not always required, since an intensified treatment option is reasonably reserved to fit patients. The Italian Group of Haematopathology proposes herein a practical algorithm for the diagnosis of aggressive mature B cell lymphomas based on a stepwise approach, aimed to select cases deserving molecular analysis, in order to optimize time and resources still assuring the optimal management for any patient

    Solving Dense Generalized Eigenproblems on Multi-threaded Architectures

    Get PDF
    We compare two approaches to compute a fraction of the spectrum of dense symmetric definite generalized eigenproblems: one is based on the reduction to tridiagonal form, and the other on the Krylov-subspace iteration. Two large-scale applications, arising in molecular dynamics and material science, are employed to investigate the contributions of the application, architecture, and parallelism of the method to the performance of the solvers. The experimental results on a state-of-the-art 8-core platform, equipped with a graphics processing unit (GPU), reveal that in realistic applications, iterative Krylov-subspace methods can be a competitive approach also for the solution of dense problems

    Can Quantum de Sitter Space Have Finite Entropy?

    Get PDF
    If one tries to view de Sitter as a true (as opposed to a meta-stable) vacuum, there is a tension between the finiteness of its entropy and the infinite-dimensionality of its Hilbert space. We invetsigate the viability of one proposal to reconcile this tension using qq-deformation. After defining a differential geometry on the quantum de Sitter space, we try to constrain the value of the deformation parameter by imposing the condition that in the undeformed limit, we want the real form of the (inherently complex) quantum group to reduce to the usual SO(4,1) of de Sitter. We find that this forces qq to be a real number. Since it is known that quantum groups have finite-dimensional representations only for q=q= root of unity, this suggests that standard qq-deformations cannot give rise to finite dimensional Hilbert spaces, ruling out finite entropy for q-deformed de Sitter.Comment: 10 pages, v2: references added, v3: minor corrections, abstract and title made more in-line with the result, v4: published versio
    corecore