331 research outputs found

    Black holes as mirrors: quantum information in random subsystems

    Get PDF
    We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the "half-way" point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis.Comment: 18 pages, 2 figures. (v2): discussion of decoding complexity clarifie

    Quantum non-malleability and authentication

    Get PDF
    In encryption, non-malleability is a highly desirable property: it ensures that adversaries cannot manipulate the plaintext by acting on the ciphertext. Ambainis, Bouda and Winter gave a definition of non-malleability for the encryption of quantum data. In this work, we show that this definition is too weak, as it allows adversaries to "inject" plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy. Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design (and hence also to the definition of Ambainis et al.). Our techniques also yield new results regarding the closely-related task of quantum authentication. We show that "total authentication" (a notion recently proposed by Garg, Yuen and Zhandry) can be satisfied with two-designs, a significant improvement over the eight-design construction of Garg et al. We also show that, under a mild adaptation of the rejection procedure, both total authentication and our notion of non-malleability yield quantum authentication as defined by Dupuis, Nielsen and Salvail.Comment: 20+13 pages, one figure. v2: published version plus extra material. v3: references added and update

    Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing

    Full text link
    Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a device's prospects with regards to achieving fault-tolerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error per randomized π2\frac{\pi}{2} pulse of 1.3±0.1×1041.3 \pm 0.1 \times 10^{-4} with a single qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one and two qubit gates of 4.7±0.3×1034.7 \pm 0.3 \times 10^{-3} for a three qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.Comment: 10 pages, 6 figures, submitted versio

    Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity

    Get PDF
    Individual diversity at the major histocompatibility complex (MHC) is predicted to be optimal at intermediate rather than at maximal levels. We showed previously in sticklebacks that an intermediate MHC diversity is predominant in natural populations and provides maximal resistance in experimental multiple parasite infections in the laboratory. However, what counts ultimately is the lifetime reproductive success (LRS). Here, we measured LRS of six laboratory-bred sib-groups—to minimize the influence of non-MHC genes—three-spined sticklebacks (Gasterosteus aculeatus) during their entire breeding period, each in a seminatural enclosure in the lake of their parents, where they were exposed to the natural spectrum of parasites. We collected developing clutches at regular intervals and determined parenthood for a representative number of eggs (2279 in total) per clutch with 18 microsatellites. Both males and females with an intermediate MHC class IIB variant number had the highest LRS. The mechanistic link of MHC diversity and LRS differed between the sexes: in females, we found evidence for a trade-off between number of eggs and immunocompentence, whereas in males this correlation was concealed by different timing strategies of reproduction

    Quantum authentication with key recycling

    Get PDF
    We show that a family of quantum authentication protocols introduced in [Barnum et al., FOCS 2002] can be used to construct a secure quantum channel and additionally recycle all of the secret key if the message is successfully authenticated, and recycle part of the key if tampering is detected. We give a full security proof that constructs the secure channel given only insecure noisy channels and a shared secret key. We also prove that the number of recycled key bits is optimal for this family of protocols, i.e., there exists an adversarial strategy to obtain all non-recycled bits. Previous works recycled less key and only gave partial security proofs, since they did not consider all possible distinguishers (environments) that may be used to distinguish the real setting from the ideal secure quantum channel and secret key resource.Comment: 38+17 pages, 13 figures. v2: constructed ideal secure channel and secret key resource have been slightly redefined; also added a proof in the appendix for quantum authentication without key recycling that has better parameters and only requires weak purity testing code

    Efficient and feasible state tomography of quantum many-body systems

    Full text link
    We present a novel method to perform quantum state tomography for many-particle systems which are particularly suitable for estimating states in lattice systems such as of ultra-cold atoms in optical lattices. We show that the need for measuring a tomographically complete set of observables can be overcome by letting the state evolve under some suitably chosen random circuits followed by the measurement of a single observable. We generalize known results about the approximation of unitary 2-designs, i.e., certain classes of random unitary matrices, by random quantum circuits and connect our findings to the theory of quantum compressed sensing. We show that for ultra-cold atoms in optical lattices established techniques like optical super-lattices, laser speckles, and time-of-flight measurements are sufficient to perform fully certified, assumption-free tomography. Combining our approach with tensor network methods - in particular the theory of matrix-product states - we identify situations where the effort of reconstruction is even constant in the number of lattice sites, allowing in principle to perform tomography on large-scale systems readily available in present experiments.Comment: 10 pages, 3 figures, minor corrections, discussion added, emphasizing that no single-site addressing is needed at any stage of the scheme when implemented in optical lattice system

    A common genetic target for environmental and heritable influences on aggressiveness in Drosophila

    Get PDF
    Environmental and genetic factors can modulate aggressiveness, but the biological mechanisms underlying their influence are largely unknown. Social experience with conspecifics suppresses aggressiveness in both vertebrate and invertebrate species, including Drosophila. We searched for genes whose expression levels correlate with the influence of social experience on aggressiveness in Drosophila by performing microarray analysis of head tissue from socially isolated (aggressive) vs. socially experienced (nonaggressive) male flies. Among {approx}200 differentially expressed genes, only one was also present in a gene set previously identified by profiling Drosophila strains subjected to genetic selection for differences in aggressiveness [Dierick HA, Greenspan RJ (2006) Nat Genet 38:1023–1031]. This gene, Cyp6a20, encodes a cytochrome P450. Social experience increased Cyp6a20 expression and decreased aggressiveness in a reversible manner. In Cyp6a20 mutants, aggressiveness was increased in group-housed but not socially isolated flies. These data identify a common genetic target for environmental and heritable influences on aggressiveness. Cyp6a20 is expressed in a subset of nonneuronal support cells associated with pheromone-sensing olfactory sensilla, suggesting that social experience may influence aggressiveness by regulating pheromone sensitivity

    Underreporting of meningococcal disease incidence in the Netherlands: results from a capture-recapture analysis based on three registration sources with correction for false positive diagnoses.

    Get PDF
    In order to come to a reliable evaluation of the effectiveness of the chosen vaccination policy regarding meningococcal disease, the completeness of registrations on meningococcal disease in the Netherlands was estimated with the capture-recapture method. Data over 1993-1998 were collected from (A) mandatory notifications (n = 2926); (B) hospital registration (n = 3968); (C) laboratory surveillance (n = 3484). As the standard capture-recapture method does not take into account false positive diagnoses, we developed a model to adjust for the lack of specificity of our sources. We estimated that 1363 cases were not registered in any of the three sources in the period of study. The completeness of the three sources was therefore estimated at 49% for source A, 67% for source B and 58% for source C. After adjustment for false positive diagnoses, the completeness of source A, B, and C was estimated as 52%, 70% and 62%, respectively. The capture-recapture methods offer an attractive approach to estimate the completeness of surveillance sources and hence contribute to a more accurate estimate of the disease burden under study. However, the method does not account for higher-order interactions or presence of false positive diagnoses. Being aware of these limitations, the capture-recapture method still elucidates the (in)completeness of sources and gives a rough estimate of this (in)completeness. This makes a more accurate monitoring of disease incidence possible and hence attributes to a more reliable foundation for the design and evaluation of health interventions such as vaccination programs
    corecore