112 research outputs found
On the validation of rainfall retrieval algorithms for satellite microwave data
The Algorithm Intercomparison Project utilises rainfall estimates derived from radar data to validate the algorithms developed for rainfall retrievals from satellite microwave data. Since seven minutes are needed in order to have a complete radar scan, while the acquisition of the corresponding satellite microwave image needs only a few seconds, the same pixel can be sensed by radar as much as
seven minutes later. Within this time delay the raining cells can be displaced and the consequent mismatch can cause a decrease in the correlation coefficient of the
comparison. A method to reveal this time-lag effect is presented and a possible approach to take it into account in the validation process for future missions is suggested
On the validation of rainfall retrieval algorithms for satellite microwave data
The Algorithm Intercomparison Project utilises rainfall estimates derived from radar data to validate the algorithms developed for rainfall retrievals from satellite microwave data. Since seven minutes are needed in order to have a complete radar scan, while the acquisition of the corresponding satellite microwave image needs only a few seconds, the same pixel can be sensed by radar as much as
seven minutes later. Within this time delay the raining cells can be displaced and the consequent mismatch can cause a decrease in the correlation coefficient of the
comparison. A method to reveal this time-lag effect is presented and a possible approach to take it into account in the validation process for future missions is suggested
First results on bathymetry, stratification and physicochemical limnology of a small tropical African reservoir (Malilangwe, Zimbabwe)
The study provides a 9-month record of Malilangwe Reservoir water chemistry periodicity, for the period between February and October 2011. Malilangwe Reservoir is a small (211 ha), shallow (mean depth 4.54 m) reservoir situated in the south-eastern lowveld of Zimbabwe. The reservoir has not spilled in nearly 11 years, which makes it a unique system as most reservoirs of comparable size spill annually. This is the first bathymetric and limnological study of the reservoir where the morphology and physicochemical quality of the water body were examined. The reservoir was not strongly stratified during the hot-wet and hot-dry season with oxygen depletion of < 2 mg·â-1 DO being observed in the bottom layers (<6 m depth). Nutrient concentrations varied throughout the seasons. The reservoir exhibited marked seasonal fluctuations in water level, which decreased by over 149 cm between February and October. The N:P ratio rose to as high as 10.9 and generally reflected high levels of phosphorus in the reservoir. There were significant differences (p<0.05) in Secchi depth transparency between the study sites. Differences observed in water quality were due to water level fluctuations, with poor water quality conditions being experienced during the hot-dry season and the cool-dry season when water levels were low. The reservoir was classified as being mesotrophic. Therefore, there is a risk of eutrophication, especially since the reservoir is currently merely a sink for nutrients
The complete mitogenome of an undescribed clam shrimp of the genus Gondwanalimnadia (Branchiopoda: Spinicaudata), from a temporary wetland in Central District, Botswana
Clam shrimps (Spinicaudata) are a widespread and diverse crustacean group that frequent temporary aquatic habitats, but few complete mitochondrial genomes have been published for this group. Here, we report the mitogenome of an undescribed Gondwanalimnadia species from Botswana. Raw sequences were assembled into a single circular genome with a total length of 15,663âbp. Thirteen protein-coding genes, 22 tRNAs, and 2 rRNAs were identified using the MITOS pipeline. The mitogenomeâs GC content is 33.52%. Phylogenetic analysis using protein-coding genes confirmed that Gondwanalimnadia sp. is closely related to another member of the Limnadiidae, Limnadia lenticularis
The complete mitogenome of the fairy shrimp Streptocephalus cafer (Lovén, 1847) (Crustacea: Branchiopoda: Anostraca) from an ephemeral pond in Botswana, southern Africa
Fairy shrimps (Anostraca) constitute an important component of seasonally aquatic habitats, but few complete mitochondrial genomes have been published for this group. Here, we report the mitogenome of a common southern African species, Streptocephalus cafer, from Botswana (accession number: MN720104). Low-coverage shotgun sequencing recovered two contigs 15653âbp and 1347âbp in length that are separated by a repetitive region of unknown length within the non-coding control region. The mitogenomeâs GC content is 31.80%. Phylogenetic analysis using protein-coding genes confirms the sister taxon relationship of S. cafer with the only other congener whose mitogenome has been reconstructed to date, the Asian S. sirindhornae
The complete mitogenome of Leptestheria brevirostris Barnard, 1924, a rock pool clam shrimp (Branchiopoda: Spinicaudata) from Central District, Botswana
Spinicaudatan clam shrimp are a widespread and diverse group of branchiopod crustaceans, yet few mitochondrial genomes have been published for this taxonomic group. Here, we present the mitogenome of Leptestheria brevirostris from a rock pool ecosystem in Botswana. Massively parallel sequencing of a single specimen facilitated the reconstruction of the speciesâ 15,579âbp circularized mitogenome. The reconstructed phylogenetic tree confirms that L. brevirostris forms a monophyletic group with other diplostracan branchiopods, and that these are the sister taxon to Notostraca. The mitogenome reconstructed here is the first to be reported from a leptestherid clam shrimp
Quantifying Metal Contamination and Potential Uptake by Phragmites australis Adans. (Poaceae) Along a Subtropical River System
Metal pollution is pervasive across terrestrial and aquatic ecosystems owing to anthropogenic activities. Sediments can accrue high concentrations of metals and act as secondary sources, and thus may be valuable indicators of metal contamination across spatiotemporal scales. In aquatic systems, the extent of metal pollution may be further mediated by transference among sediments and living organisms, with plant metal contaminants potentially predictive of underlying sediment concentrations. The present study thus quantifies the extent of metal pollutants (Na, K, Ca, Mg, Cu, Zn, Mn, B, Fe) across multiple study sites and seasons (cool-dry, hot-wet, hot-dry) in a subtropical river system. Furthermore, uptake by a key macrophyte species, Phragmites australis, was examined and correlated with sediment pollution levels among different plant parts. Overall, sediment pollution load indices differed seasonally, being significantly highest during the cool-dry season irrespective of sampling location, suggesting that periods with reduced water flows can exacerbate metal pollution levels in riverine sediments. Also, metal concentrations were highest in upstream wetland sites, indicating a capacity for metal sink effects in these areas. Overall, macrophytes contained high concentrations of select metals, however composition and concentrations differed across plant parts, with roots containing particularly high concentrations of Fe and B. Correlations between sediment and macrophyte concentrations were mostly non-significant, whilst stem Mn and Fe concentrations correlated significantly negatively and positively to sediment concentrations, respectively. The present study identifies key spatiotemporal differences in multiple metal contaminants in an understudied subtropical aquatic system that align with hydrological regime differences. Whilst macrophytes were not found to be major accumulators, or predictors, of metal contaminants in this study, they may collectively play a central role in concentration regulation in aquatic systems
Recommended from our members
Sexâskewed trophic impacts in ephemeral wetlands
Predation can have marked impacts on ecosystem structure, function, and stability. However, quantifications of biotic interactions frequently overlook demographic variabilities within populations, which can modulate interaction strengths, such as sex and reproductive status. Compositional population ratios between males and females, alongside reproductive status, are highly variable temporally in ephemeral aquatic systems, and may profoundly mediate levels of ecological impact and thus stability of trophic groups.
In the present study, we apply functional responses (resource intake as a function of resource density) to quantify predatory impacts of adult males, nonâgravid females, and gravid females of the calanoid copepod Lovenula raynerae (Diaptomidae), an abundant ephemeral pond specialist, on larvae of the Culex pipiens (Culicidae) mosquito complex. We then develop a novel metric to forecast populationâlevel impacts across different population sex ratio scenarios.
Lovenula raynerae demonstrated prey population destabilising Type II functional responses irrespective of sex and reproductive status, yet variable functional response magnitudes were found. While male and nonâgravid female copepods exhibited similar functional response maximum feeding rates, gravid female feeding rates were substantially higher, implying higher resource demands for progeny development. Ecological impacts of L. raynerae on lower trophic groups increased markedly where their abundances increased but, crucially, also as population sex ratios became more biased towards gravid female copepods.
We demonstrate that populationâlevel impacts do not only correlate tightly with abundance but may be further modulated by reproductive status variations. Thus, the development of sexâskewed ratios in favour of gravid females during the hydroperiod probably heightens ecological impacts on lower trophic groups. The implications of these results for prey population stability are discussed in the context of freshwater ecosystems
An assessment of the quality of randomised controlled trials conducted in China
Background: Despite the rapid increase in research in China, little is known about the quality of clinical trials conducted there.Methods: A systematic review and critical appraisal of randomised controlled trials (RCTs) conducted in China and published in 2004 was undertaken to describe their characteristics, assess the quality of their reporting, and where possible, the quality of their conduct. Randomised controlled trials in all disease areas and types of interventions, which took place in China and included Chinese citizens were identified using PubMed and hand searching the Journal Series of the Chinese Medical Association. Quality was assessed against a subset of criteria adapted from the CONSORT statement.Results: Three hundred and seven RCTs were included. One hundred and ninety-nine (64.8%) failed to report methods of randomization and 254 (82.4%) did not mention blinding of either participants or investigators. Reporting of baseline characteristics, primary outcome and length of follow-up was inadequate in a substantial proportion of studies. Fewer than 11% of RCTs mentioned ethical approval and only 18.0% adequately discussed informed consent. However, dropout rates were very favourable with nearly 44% of trials reporting a zero dropout rate.Conclusion: Reporting of RCTs in China requires substantial improvement to meet the targets of the CONSORT statement. The conduct of Chinese RCTs cannot be directly inferred from the standard of reporting; however without good reporting the methods of the trials cannot be clearly ascertained
Recommended from our members
Intermediate predator naïveté and sex-skewed vulnerability predict the impact of an invasive higher predator
The spread of invasive species continues to reduce biodiversity across all regions and habitat types globally. However, invader impact prediction can be nebulous, and approaches often fail to integrate coupled direct and indirect invader effects. Here, we examine the ecological impacts of an invasive higher predator on lower trophic groups, further developing methodologies to more holistically quantify invader impact. We employ functional response (FR, resource use under different densities) and prey switching experiments to examine the trait- and density-mediated impacts of the invasive mosquitofish Gambusia affinis on an endemic intermediate predator Lovenula raynerae (Copepoda). Lovenula raynerae effectively consumed larval mosquitoes, but was naĂŻve to mosquitofish cues, with attack rates and handling times of the intermediate predator unaffected by mosquitofish cue-treated water. Mosquitofish did not switch between male and female prey, consistently displaying a strong preference for female copepods. We thus demonstrate a lack of risk-reduction activity in the presence of invasive fish by L. raynerae and, in turn, high susceptibility of such intermediate trophic groups to invader impact. Further, we show that mosquitofish demonstrate sex-skewed predator selectivity towards intermediate predators of mosquito larvae, which may affect predator population demographics and, perversely, increase disease vector proliferations. We advocate the utility of FRs and prey switching combined to holistically quantify invasive species impact potential on native organisms at multiple trophic levels
- âŠ