166 research outputs found

    Photoionization of the Ne-like Si4+ ion in ground and metastable states in the 110–184-eV photon energy range

    Get PDF
    We present measurements of the absolute photoionization cross section of the neonlike Si4+ ion over the 110–184 eV photon energy range. The measurements were performed using two independent merged-beam setups at the super-ACO and ASTRID synchrotron-radiation facilities, respectively. Signals produced in the photoionization of the 2p subshell of the Si4+ ion both from the 2p6 1S0 ground state and the 2p53s 3P0,2 metastable levels were observed. Calculations of the 2p photoionization cross sections were carried out using a multi-configuration Dirac-Fock code. They give results in good agreement with the measured spectra. Comparison with other available theoretical results is also presented

    Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr

    Get PDF
    Two-photon excitation of a single-photon forbidden Auger resonance has been observed and investigated using the intense extreme ultraviolet radiation from the free electron laser in Hamburg. At the wavelength 26.9 nm (46 eV) two photons promoted a 3d core electron to the outer 4d shell. The subsequent Auger decay, as well as several nonlinear above threshold ionization processes, were studied by electron spectroscopy. The experimental data are in excellent agreement with theoretical predictions and analysis of the underlying multiphoton processes

    Effect of electronic angular momentum exchange on photoelectron anisotropy following the two-colour ionization of krypton atoms

    Get PDF
    We present photoelectron energy and angular distributions for resonant two-photon ionization via several low-lying Rydberg states of atomic Kr. The experiments were performed by using synchrotron radiation to pump the Rydberg states and a continuous wave laser to probe them. Photoelectron images, recorded with both linear and circular polarized pump and probe light, were obtained in coincidence with mass-analyzed Kr ions. The photoelectron angular distributions and branching ratios for direct ionization into the Kr+ 2P3/2 and 2P1/2 spin-orbit continua show considerable dependence on the intermediate level, as well as on the polarizations of the pump and probe light. Photoelectron angular distributions were also recorded with several polarization combinations following two-colour excitation of the (2P1/2)5f[5/2]2 autoionizing resonance. These results are compared with the results of recent work on the corresponding autoionizing resonance in atomic Xe

    Angle-resolved two-dimensional mapping of electron emission from the inner-shell 2p excitations in Cl<sub>2</sub>

    No full text
    Angle-resolved Auger and valence photoelectron spectra were measured over a 14-eV photon energy range across the Cl2 2p ionization thresholds. The measurements were carried out using highly efficient time-of-flight spectrometers coupled with photons from the Atomic and Molecular undulator beamline of the Advanced Light Source and an advanced data-acquisition system. Auger-electron spectra of 2→pσ* and 2→pnl resonances were analyzed and the evolution of the resonant Auger to the normal Auger decay distorted by postcollision interaction was examined. We find that valence photoionization channels do not resonate strongly at the photon energies of the core-to-Rydberg excitation, in contrast to the strongly resonating ones observed in the HCl molecule. Auger decay spectra of the 2p−1σ* resonances showed no evidence of atomic transitions in Cl*, also in contrast to HCl. In addition, angular distribution of the photoelectron and Auger-electron lines was derived

    Experimental and theoretical study of resonant core-hole spectroscopies of gas-phase free-base phthalocyanine

    Get PDF
    We studied N 1s−1 inner-shell processes of the free base Phthalocyanine molecule, H2Pc, in the gas-phase. This complex organic molecule contains three different nitrogen sites defined by their covalent bonds. We identify the contribution of each site in ionized, core–shell excited or relaxed electronic states by the use of different theoretical methods. In particular, we present resonant Auger spectra along with a tentative new theoretical approach based on multiconfiguration self-consistent field calculations to simulate them. These calculations may pave the road towards resonant Auger spectroscopy in complex molecules

    4d-inner-shell ionization of Xe+ ions and subsequent Auger decay

    Get PDF
    We have studied Xe+4d inner-shell photoionization in a direct experiment on Xe+ ions, merging an ion and a photon beam and detecting the ejected electrons with a cylindrical mirror analyzer. The measured 4d photoelectron spectrum is compared to the 4d core valence double ionization spectrum of the neutral Xe atom, obtained with a magnetic bottle spectrometer. This multicoincidence experiment gives access to the spectroscopy of the individual Xe2+4d−15p−1 states and to their respective Auger decays, which are found to present a strong selectivity. The experimental results are interpreted with the help of ab initio calculations.1\. Auflag
    • …
    corecore