39 research outputs found

    Coupled polar-axial magnetar oscillations

    Full text link
    We study coupled axial and polar axisymmetric oscillations of a neutron star endowed with a strong magnetic field, having both poloidal and toroidal components. The toroidal component of the magnetic field is driving the coupling between the polar and axial oscillations. The star is composed of a fluid core as well as a solid crust. Using a two dimensional general relativistic simulation and a magnetic field B = 10^16 G, we study the change in the polar and axial spectrum caused by the coupling. We find that the axial spectrum suffers a dramatic change in its nature, losing its continuum character. In fact, we find that only the 'edges' of the continua survive, generating a discrete spectrum. As a consequence the crustal frequencies, that in our previous simulation could be absorbed by the continua, if they were embedded inside it, are now long living oscillations. They may lose their energy only in the very special case that they are in resonance with the 'edges' of the continua.Comment: 12 pages, 3 figures. Revised version accepted in MNRA

    On the Quasi-Periodic Oscillations of Magnetars

    Full text link
    We study torsional Alfv\'en oscillations of magnetars, i.e., neutron stars with a strong magnetic field. We consider the poloidal and toroidal components of the magnetic field and a wide range of equilibrium stellar models. We use a new coordinate system (X,Y), where X=a1sinθX=\sqrt{a_1} \sin \theta, Y=a1cosθY=\sqrt{a_1}\cos \theta and a1a_1 is the radial component of the magnetic field. In this coordinate system, the 1+2-dimensional evolution equation describing the quasi-periodic oscillations, QPOs, see Sotani et al. (2007), is reduced to a 1+1-dimensional equation, where the perturbations propagate only along the Y-axis. We solve the 1+1-dimensional equation for different boundary conditions and open magnetic field lines, i.e., magnetic field lines that reach the surface and there match up with the exterior dipole magnetic field, as well as closed magnetic lines, i.e., magnetic lines that never reach the stellar surface. For the open field lines, we find two families of QPOs frequencies; a family of "lower" QPOs frequencies which is located near the X-axis and a family of "upper" frequencies located near the Y-axis. According to Levin (2007), the fundamental frequencies of these two families can be interpreted as the turning points of a continuous spectrum. We find that the upper frequencies are constant multiples of the lower frequencies with a constant equaling 2n+1. For the closed lines, the corresponding factor is n+1 . By these relations, we can explain both the lower and the higher observed frequencies in SGR 1806-20 and SGR 1900+14.Comment: 8 pages, 7 figure

    Alfv\'en Polar Oscillations of Relativistic Stars

    Full text link
    We study polar Alfv\'en oscillations of relativistic stars endowed with a strong global poloidal dipole magnetic field. Here we focus only on the axisymmetric oscillations which are studied by evolving numerically the two-dimensional perturbation equations. Our study shows that the spectrum of the polar Alfv\'{e}n oscillations is discrete in contrast to the spectrum of axial Alfv\'{e}n oscillations which is continuous. We also show that the typical fluid modes, such as the f and p modes, are not significantly affected by the presence of the strong magnetic field.Comment: 10 pages, 5 figure

    Validation of satellite OPEMW precipitation product with ground-based weather radar and rain gauge networks

    Get PDF
    Abstract. The Precipitation Estimation at Microwave Frequencies (PEMW) algorithm was developed at the Institute of Methodologies for Environmental Analysis of the National Research Council of Italy (IMAA-CNR) for inferring surface rain intensity (sri) from satellite passive microwave observations in the range from 89 to 190 GHz. The operational version of PEMW (OPEMW) has been running continuously at IMAA-CNR for two years. The OPEMW sri estimates, together with other precipitation products, are used as input to an operational hydrological model for flood alert forecast. This paper presents the validation of OPEMW against simultaneous ground-based observations from a network of 20 weather radar systems and a network of more than 3000 rain gauges distributed over the Italian Peninsula and main islands. The validation effort uses a data set covering one year (July 2011–June 2012). The effort evaluates dichotomous and continuous scores for the assessment of rain detection and quantitative estimate, respectively, investigating both spatial and temporal features. The analysis demonstrates 98% accuracy in correctly identifying rainy and non-rainy areas; it also quantifies the increased ability (with respect to random chance) to detect rainy and non-rainy areas (0.42–0.45 Heidke skill score) or rainy areas only (0.27–0.29 equitable threat score). Performances are better than average during summer, fall, and spring, while worse than average in the winter season. The spatial–temporal analysis does not show seasonal dependence except over the Alps and northern Apennines during winter. A binned analysis in the 0–15 mm h−1 range suggests that OPEMW tends to slightly overestimate sri values below 6–7 mm h−1 and underestimate sri above those values. With respect to rain gauges (weather radars), the correlation coefficient is larger than 0.8 (0.9). The monthly mean difference and standard deviation remain within ±1 and 2 mm h−1 with respect to rain gauges (respectively −2–0 and 4 mm h−1 with respect to weather radars)

    Are there any stable magnetic fields in barotropic stars?

    Full text link
    We construct barotropic stellar equilibria, containing magnetic fields with both poloidal and toroidal field components. We extend earlier results by exploring the effect of different magnetic field and current distributions. Our results suggest that the boundary treatment plays a major role in whether the poloidal or toroidal field component is globally dominant. Using time evolutions we provide the first stability test for mixed poloidal-toroidal fields in barotropic stars, finding that all these fields suffer instabilities due to one of the field components: these are localised around the pole for toroidal-dominated equilibria and in the closed-field line region for poloidal-dominated equilibria. Rotation provides only partial stabilisation. There appears to be very limited scope for the existence of stable magnetic fields in barotropic stars. We discuss what additional physics from real stars may allow for stable fields.Comment: 16 pages, 11 figures. Some minor revision from v1, including a new figure; results unchanged. Now published in MNRA

    Bayesian timing analysis of giant flare of SGR 1806-20 by RXTE PCA

    Full text link
    By detecting high frequency quasi-periodic oscillations (QPOs) and estimating frequencies of them during the decaying tail of giant flares from Soft Gamma-ray Repeaters (SGRs) useful constraints for the equation of state (EoS) of superdense matter may be obtained via comparison with theoretical predictions of eigenfrequencies. We used the data collected by the Rossi X-Ray Timing Explorer (RXTE/XTE) Proportional Counter Array (PCA) of a giant flare of SGR 1806-20 on 2004 Dec 27 and applied a Bayesian periodicity detection method (Gregory & Loredo, 1992) for the search of oscillations of transient nature. In addition to the already detected frequencies, we found a few new frequencies (f_{QPOs} ~ 16.9, 21.4, 36.4, 59.0, 116.3 Hz) of oscillations predicted by Colaiuda et al. (2009) based on the APR_{14} EoS (Akmal et al., 1998) for SGR 1806-20.Comment: 5 pages, 7 figures, A&A accepte

    Overview of the first HyMeX Special Observation Period over Italy: observations and model results

    Get PDF
    Abstract. The Special Observation Period (SOP1), part of the HyMeX campaign (Hydrological cycle in the Mediterranean Experiments, 5 September–6 November 2012), was dedicated to heavy precipitation events and flash floods in the western Mediterranean, and three Italian hydro-meteorological monitoring sites were identified: Liguria–Tuscany, northeastern Italy and central Italy. The extraordinary deployment of advanced instrumentation, including instrumented aircrafts, and the use of several different operational weather forecast models, including hydrological models and marine models, allowed an unprecedented monitoring and analysis of high-impact weather events around the Italian hydro-meteorological sites. This activity has seen strong collaboration between the Italian scientific and operational communities. In this paper an overview of the Italian organization during SOP1 is provided, and selected Intensive Observation Periods (IOPs) are described. A significant event for each Italian target area is chosen for this analysis: IOP2 (12–13 September 2012) in northeastern Italy, IOP13 (15–16 October 2012) in central Italy and IOP19 (3–5 November 2012) in Liguria and Tuscany. For each IOP the meteorological characteristics, together with special observations and weather forecasts, are analyzed with the aim of highlighting strengths and weaknesses of the forecast modeling systems, including the hydrological impacts. The usefulness of having different weather forecast operational chains characterized by different numerical weather prediction models and/or different model set up or initial conditions is finally shown for one of the events (IOP19)

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio
    corecore