150 research outputs found

    The active metabolite of leflunomide, A77 1726, inhibits the production of prostaglandin E2, matrix metalloproteinase 1 and interleukin 6 in human fibroblast‐like synoviocytes

    Get PDF
    Objectives. To investigate the effects of the active metabolite of leflunomide, A77 1726, on fibroblast‐like synoviocytes. In rheumatoid arthritis (RA) synoviocytes participate in tissue destruction by producing metalloproteinases (MMP), prostaglandin E2 (PGE2) and interleukin (IL) 6, which are involved in extracellular matrix degradation, resorption of the mineral phase and osteoclast‐mediated bone resorption. Methods. Human synoviocytes were stimulated with IL‐1α or tumour necrosis factor α (TNF‐α) in the presence of A77 1726. Culture supernatants were analysed for production of interstitial collagenase (MMP‐1), tissue‐inhibitor of metalloproteinases 1 (TIMP‐1), PGE2 and IL‐6. Total RNA was isolated and analysed for steady‐state levels of MMP‐1, cyclooxygenase‐2 (COX‐2) and IL‐6 mRNA. Results. A77 1726 inhibited the production of PGE2 in synoviocytes activated by TNF‐α and IL‐1α with median inhibitory concentrations (IC50) of 7 and 3 ”m respectively. In contrast, MMP‐1 and IL‐6 production was inhibited at high A77 1726 concentrations (> 10 ”m), whereas TIMP‐1 was not affected. The inhibition of MMP‐1 and IL‐6 production was due to the known inhibitory effect of A77 1726 on pyrimidine synthesis, as it was reversed by the addition of uridine. This did not apply to PGE2 production, which was inhibited via direct action of A77 1726 on COX‐2, as shown by the increasing amount of substrate (arachidonic acid) in the culture medium. Conclusion. This study shows that some of the beneficial effect of leflunomide in RA patients may be due to the inhibition of PGE2, IL‐6 and MMP‐1 production in synoviocytes. This effect, coupled with its multiple inhibitory effects on T lymphocyte functions, might account for the significant reduction in the rate of disease progression in RA patients treated with leflunomid

    Individual and collective stock dynamics: intra-day seasonalities

    Full text link
    We establish several new stylised facts concerning the intra-day seasonalities of stock dynamics. Beyond the well known U-shaped pattern of the volatility, we find that the average correlation between stocks increases throughout the day, leading to a smaller relative dispersion between stocks. Somewhat paradoxically, the kurtosis (a measure of volatility surprises) reaches a minimum at the open of the market, when the volatility is at its peak. We confirm that the dispersion kurtosis is a markedly decreasing function of the index return. This means that during large market swings, the idiosyncratic component of the stock dynamics becomes sub-dominant. In a nutshell, early hours of trading are dominated by idiosyncratic or sector specific effects with little surprises, whereas the influence of the market factor increases throughout the day, and surprises become more frequent.Comment: 9 pages, 7 figure

    Expression of TNF-superfamily members BAFF and APRIL in breast cancer: Immunohistochemical study in 52 invasive ductal breast carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies suggest an association between chronic inflammation, modulating the tissue microenvironment, and tumor biology. Tumor environment consists of tumor, stromal and endothelial cells and infiltrating macrophages, T lymphocytes, and dendritic cells, producing an array of cytokines, chemokines and growth factors, accounting for a complex cell interaction and regulation of differentiation, activation, function and survival of tumor and surrounding cells, responsible for tumor progression and spreading or induction of antitumor immune responses and rejection. Tumor Necrosis Factor (TNF) family members (19 ligands and 29 receptors) represent a pleiotropic family of agents, related to a plethora of cellular events from proliferation and differentiation to apoptosis and tumor reduction. Among these members, BAFF and APRIL (CD257 and CD256 respectively) gained an increased interest, in view of their role in cell protection, differentiation and growth, in a number of lymphocyte, epithelial and mesenchymal structures.</p> <p>Methods</p> <p>We have assayed by immunohistochemistry 52 human breast cancer biopsies for the expression of BAFF and APRIL and correlated our findings with clinicopathological data and the evolution of the disease.</p> <p>Results</p> <p>BAFF was ubiquitely expressed in breast carcinoma cells, DCIS, normal-appearing glands and ducts and peritumoral adipocytes. In contrast, APRIL immunoreactive expression was higher in non-malignant as compared to malignant breast structures. APRIL but not BAFF immunoreactivity was higher in N+ tumors, and was inversely related with the grade of the tumors. Neither parameter was related to DFS or the OS of patients.</p> <p>Conclusion</p> <p>Our data show, for the first time, an autocrine secretion of BAFF and APRIL from breast cancer cells, offering new perspectives for their role in neoplastic and normal breast cell biology and offering new perspectives for possible selective intervention in breast cancer.</p

    In Vivo Dioxin Favors Interleukin-22 Production by Human CD4+ T Cells in an Aryl Hydrocarbon Receptor (AhR)-Dependent Manner

    Get PDF
    The transcription factor aryl hydrocarbon receptor (AhR) mediates the effects of a group of chemicals known as dioxins, ubiquitously present in our environment. However, it is poorly known how the in vivo exposure to these chemicals affects in humans the adaptive immune response. We therefore assessed the functional phenotype of T cells from an individual who developed a severe cutaneous and systemic syndrome after having been exposed to an extremely high dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).T cells of the TCDD-exposed individual were studied for their capacity to produce cytokines in response to polyclonal and superantigenic stimulation, and for the expression of chemokine receptors involved in skin homing. The supernatants from T cells of the exposed individual contained a substantially increased amount of interleukin (IL)-22 but not of IL-17A, interferon (IFN)-Îł or IL-10 when compared to nine healthy controls. In vitro experiments confirmed a direct, AhR-dependent, enhancing effect of TCDD on IL-22 production by CD4+ T cells. The increased production of IL-22 was not dependent on AhR occupancy by residual TCDD molecules, as demonstrated in competition experiments with the specific AhR antagonist CH-223191. In contrast, it was due to an increased frequency of IL-22 single producing cells accompanied by an increased percentage of cells expressing the skin-homing chemokine receptors CCR6 and CCR4, identified through a multiparameter flow cytometry approach. Of interest, the frequency of CD4+CD25(hi)FoxP3+ T regulatory cells was similar in the TCDD-exposed and healthy individuals.This case strongly supports the contention that human exposure to persistent AhR ligands in vivo induce a long-lasting effect on the human adaptive immune system and specifically polarizes CD4+ T cells to produce IL-22 and not other T cell cytokines with no effect on T regulatory cells

    Tex19.1 Promotes Spo11-Dependent Meiotic Recombination in Mouse Spermatocytes

    Get PDF
    Meiosis relies on the SPO11 endonuclease to generate the recombinogenic DNA double strand breaks (DSBs) required for homologous chromosome synapsis and segregation. The number of meiotic DSBs needs to be sufficient to allow chromosomes to search for and find their homologs, but not excessive to the point of causing genome instability. Here we report that the mammal-specific gene Tex19.1 promotes Spo11-dependent recombination in mouse spermatocytes. We show that the chromosome asynapsis previously reported in Tex19.1-/- spermatocytes is preceded by reduced numbers of recombination foci in leptotene and zygotene. Tex19.1 is required for normal levels of early Spo11-dependent recombination foci during leptotene, but not for upstream events such as MEI4 foci formation or accumulation of H3K4me3 at recombination hotspots. Furthermore, we show that mice carrying mutations in Ubr2, which encodes an E3 ubiquitin ligase that interacts with TEX19.1, phenocopy the Tex19.1-/- recombination defects. These data suggest that Tex19.1 and Ubr2 are required for mouse spermatocytes to accumulate sufficient Spo11-dependent recombination to ensure that the homology search is consistently successful, and reveal a hitherto unknown genetic pathway promoting meiotic recombination in mammals
    • 

    corecore