461 research outputs found
The prediction of electric energy consumption using an artificial neural network
This paper presents the results of the studies on forecasting the electrical loads for a megapolis district with the use of artificial neural networks (ANN) as one of the most accomplished and promising solutions to this challenge. A theoretical approach to the issue is combined with the results of experimental studies using real schedules. Β© 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen
Optimal placement units of distributed generation
In this paper a new approach to solve the problem of optimal placement of distributed generation sources is proposed. The method is aimed at improving the reliability of electricity supply. The mathematical model of the optimal placement of distributed generation sources (DG) based on improving the reliability of power supply as the optimization algorithm used a genetic algorithm. The results of experimental calculations and comparative analysis of the algorithm is shown. Β© 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen
ΠΠΈΠ²ΡΠ΅Π½Π½Ρ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π΅ΡΠΈΠ»-1H-2,1-Π±Π΅Π½Π·ΠΎΡΡΠ°Π·ΠΈΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ Π½ΡΡΡΠΈΠ»Π°ΠΌΠΈ ΡΠ° Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ
Some peculiarities of the three-component interaction of 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide with active methylene nitriles and heterylcarbaldehydes have been described in this article. It has been found that ifΒ malononitrile is used, the products of the three-component reaction are 2-amino-4-heteryl-3-cyano-6-ethyl-4,6-dihydropyrano[3,2-c][2,1]benzothiazine 5,5-dioxides irrespective of the heteryl fragment nature in the initial aldehyde. When using ethyl cyanoacetate (as the active methylene nitrile) in the three-component interaction insteadΒ malononitrile the reaction lost its selectivity. In this case, depending on the heterylcarbaldehyde, three differentΒ types of products were obtained, namely 2-amino-3-alkoxycarbonyl-4-heteryl-4H-pyranes (for pyridine-3-, pyridine-4-carbaldehydes and furan-2-carbaldehyde), thriethylammonium salt of bis(1-ethyl-1H-2,1-benzothiazin-2,2-Β dioxo-4-ol-3-yl)(2-thienyl)methane (for thiophen-2-carbaldehyde) or ethyl 2-cyano-3-(1H-indol-3-yl)acrylate (forΒ indol-3-carbaldehyde). Formation of a stable triethylammonium salts was considered as the process competitiveΒ with formation of 2-amino-4H-pyranes. It has allowes to propose the modiΕΈed mechanism of 2-amino-4H-pyranesΒ formation. This mechanism includes the stage of forming triethylammonium salts of bis-adducts. According toΒ this mechanism 2-amino-3-ethoxycarbonyl-4-(2-thienyl)-4H-pyrane without any impurity of bis-adduct could beΒ selectively obtained using the three-component interaction. Triethylammonium salts of bis-adducts were obtained by direct interaction of 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide with heterylcarbaldehydes in theΒ presence of equimolar amounts of triethylamine. It has been shown that the three-component interaction of Β 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide with active methylene nitriles and heterylcarbaldehydes is a more Β effective tool in order to obtain condensed 2-amino-4-heteryl-4H-pyranes compared to the stepwise approach.ΠΠΏΠΈΡΠ°Π½Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ 1-ΡΡΠΈΠ»-1Π-2,1-Π±Π΅Π½Π·ΠΎΡΠΈΠ°Π·ΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° Ρ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π½ΠΈΡΡΠΈΠ»Π°ΠΌΠΈ ΠΈ Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΡΠ»ΡΡΠ°Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡΡΠΈΠ»Π° ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π±ΡΠ»ΠΈ 2-Π°ΠΌΠΈΠ½ΠΎ-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-3-ΡΠΈΠ°Π½ΠΎ-6-ΡΡΠΈΠ»-4,6-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠΏΠΈΡΠ°Π½ΠΎ[3,2-c][2,1]Π±Π΅Π½Π·ΠΎΡΠΈΠ°Π·ΠΈΠ½ 5,5-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Ρ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΠΏΡΠΈΡΠΎΠ΄Ρ Π³Π΅ΡΠ΅ΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ° Π² ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΌ Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π΅. ΠΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π² ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Π²ΠΌΠ΅ΡΡΠΎ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡΡΠΈΠ»Π° ΡΡΠΈΠ»ΡΠΈΠ°Π½ΠΎΠ°ΡΠ΅ΡΠ°ΡΠ° (Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΠΈΡΡΠΈΠ»Π°) ΡΠ΅Π°ΠΊΡΠΈΡ ΡΠ΅ΡΡΠ΅Ρ ΡΠ²ΠΎΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΏΡΠΈΡΠΎΠ΄Ρ Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°Β Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΡΡΠΈ ΡΠΈΠΏΠ° ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ², Π° ΠΈΠΌΠ΅Π½Π½ΠΎ 2-Π°ΠΌΠΈΠ½ΠΎ-3-Π°Π»ΠΊΠΎΠΊΡΠΈΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ»-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-4Π-ΠΏΠΈΡΠ°Π½Ρ (Π΄Π»ΡΒ ΠΏΠΈΡΠΈΠ΄ΠΈΠ½-3-, ΠΏΠΈΡΠΈΠ΄ΠΈΠ½-4-ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄ΠΎΠ² ΠΈ ΡΡΡΠ°Π½-2-ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°), ΡΡΠΈΡΡΠΈΠ»Π°ΠΌΠΌΠΎΠ½ΠΈΠ΅Π²Π°Ρ ΡΠΎΠ»Ρ Π±ΠΈΡ(1-ΡΡΠΈΠ»-1H-2,1-Π±Π΅Π½Π·ΠΎΡΠΈΠ°Π·ΠΈΠ½-2,2-Π΄ΠΈΠΎΠΊΡΠΎ-4-ΠΎΠ»-3-ΠΈΠ»)(2-ΡΠΈΠ΅Π½ΠΈΠ»)ΠΌΠ΅ΡΠ°Π½Π° (Π΄Π»Ρ ΡΠΈΠΎΡΠ΅Π½-2-ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°) ΠΈΠ»ΠΈ ΡΡΠΈΠ»2-ΡΠΈΠ°Π½ΠΎ-3-(1H-ΠΈΠ½Π΄ΠΎΠ»-3-ΠΈΠ»)Π°ΠΊΡΠΈΠ»Π°Ρ (Π΄Π»Ρ ΠΈΠ½Π΄ΠΎΠ»-3-ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°). ΠΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΈΡΡΠΈΠ»Π°ΠΌΠΌΠΎΠ½ΠΈΠ΅Π²ΡΡ
ΡΠΎΠ»Π΅ΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΡ
Π±ΠΈΡ-Π°Π΄Π΄ΡΠΊΡΠΎΠ² ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π»ΠΎΡΡ ΠΊΠ°ΠΊ ΠΊΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠ½ΡΠΉ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ 2-Π°ΠΌΠΈΠ½ΠΎ-4Π-ΠΏΠΈΡΠ°Π½ΠΎΠ² ΠΏΡΠΎΡΠ΅ΡΡ. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ 2-Π°ΠΌΠΈΠ½ΠΎ-4Π-ΠΏΠΈΡΠ°Π½ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠΉ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΡΠ°Π΄ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΈΡΡΠΈΠ»Π°ΠΌΠΌΠΎΠ½ΠΈΠ΅Π²ΡΡ
ΡΠΎΠ»Π΅ΠΉ Π±ΠΈΡ-Π°Π΄Π΄ΡΠΊΡΠΎΠ². Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ Π΄Π°Π½Π½ΡΠΌ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΠΌΡ ΡΠΌΠΎΠ³Π»ΠΈ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ 2-Π°ΠΌΠΈΠ½ΠΎ-3-ΡΡΠΎΠΊΡΠΈΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ»-4-(2-ΡΠΈΠ΅Π½ΠΈΠ»)-4H-ΠΏΠΈΡΠ°Π½ Π±Π΅Π· ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΈ Π±ΠΈΡ-Π°Π΄Π΄ΡΠΊΡΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅. Π’ΡΠΈΡΡΠΈΠ»Π°ΠΌΠΌΠΎΠ½ΠΈΠ΅Π²ΡΠ΅ ΡΠΎΠ»ΠΈ Π±ΠΈΡ-Π°Π΄Π΄ΡΠΊΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΏΡΡΠΌΡΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ 1-ΡΡΠΈΠ»-1Π-2,1-Π±Π΅Π½Π·ΠΎΡΠΈΠ°Π·ΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° Ρ Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΡΠΊΠ²ΠΈΠΌΠΎΠ»ΡΡΠ½ΡΡ
ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ² ΡΡΠΈΡΡΠΈΠ»Π°ΠΌΠΈΠ½Π°. ΠΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ 1-ΡΡΠΈΠ»-1Π-2,1-Π±Π΅Π½Π·ΠΎΡΠΈΠ°Π·ΠΈΠ½-4(3Π)-ΠΎΠ½Β 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° Ρ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π½ΠΈΡΡΠΈΠ»Π°ΠΌΠΈ ΠΈ Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΊΠΎΠ½Π΄Π΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
2-Π°ΠΌΠΈΠ½ΠΎ-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-4Π-ΠΏΠΈΡΠ°Π½ΠΎΠ² ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠΎΡΡΠ°Π΄ΠΈΠΉΠ½ΡΠΌ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠΌ.ΠΠΏΠΈΡΠ°Π½Ρ Π΄Π΅ΡΠΊΡ ΠΎΡΠΎΠ±Π»ΠΈΠ²ΠΎΡΡΡ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π΅ΡΠΈΠ»-1Π-2,1-Π±Π΅Π½Π·ΠΎΡΡΠ°Π·ΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ Π½ΡΡΡΠΈΠ»Π°ΠΌΠΈ ΡΠ° Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Ρ Π²ΠΈΠΏΠ°Π΄ΠΊΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΡΡΡΠΈΠ»Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π±ΡΠ»ΠΈ 2-Π°ΠΌΡΠ½ΠΎ-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-3-ΡΡΠ°Π½ΠΎ-6-Π΅ΡΠΈΠ»-4,6-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠΏΡΡΠ°Π½ΠΎ[3,2-c][2,1]Π±Π΅Π½Π·ΠΎΡΡΠ°Π·ΠΈΠ½ 5,5-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΈ Π½Π΅Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²ΡΠ΄ ΠΏΡΠΈΡΠΎΠ΄ΠΈ Π³Π΅ΡΠ΅ΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡ Ρ Π²ΠΈΡ
ΡΠ΄Π½ΠΎΠΌΡ Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Ρ. ΠΡΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π² ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΠΉ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π·Π°ΠΌΡΡΡΡ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΡΡΡΠΈΠ»Ρ Π΅ΡΠΈΠ»ΡΡΠ°Π½ΠΎΠ°ΡΠ΅ΡΠ°ΡΡ (Π² ΡΠΊΠΎΡΡΡ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΡΡΡΠΈΠ»Ρ) ΡΠ΅Π°ΠΊΡΡΡ Π²ΡΡΠ°ΡΠ°Ρ ΡΠ²ΠΎΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ. Π£ ΡΡΠΎΠΌΡ Π²ΠΈΠΏΠ°Π΄ΠΊΡ Π² Π·Π°Π»Π΅ΠΆΠ½ΠΎΡΡΡ Π²ΡΠ΄ ΠΏΡΠΈΡΠΎΠ΄ΠΈ Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Ρ Π±ΡΠ»ΠΎ ΠΎΡΡΠΈΠΌΠ°Π½ΠΎ ΡΡΠΈ ΡΠΈΠΏΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ², Π° ΡΠ°ΠΌΠ΅ 2-Π°ΠΌΡΠ½ΠΎ-3-Π΅ΡΠΎΠΊΡΠΈΠΊΠ°ΡΠ±ΠΎΠ½ΡΠ»-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-4Π-ΠΏΡΡΠ°Π½ΠΈ (Π΄Π»Ρ ΠΏΡΡΠΈΠ΄ΠΈΠ½-3-, ΠΏΡΡΠΈΠ΄ΠΈΠ½-4-ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄ΡΠ² ΡΠ° ΡΡΡΠ°Π½-2-ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Ρ), ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΠΎΠ½ΡΡΠ²Π° ΡΡΠ»Ρ Π±ΡΡ(1-Π΅ΡΠΈΠ»-1H-2,1-Π±Π΅Π½Π·ΠΎΡΡΠ°Π·ΠΈΠ½-2,2-Π΄ΡΠΎΠΊΡΠΎ-4-ΠΎΠ»-3-ΡΠ»)(2-ΡΡΡΠ½ΡΠ»)ΠΌΠ΅ΡΠ°Π½Ρ (Π΄Π»Ρ ΡΡΠΎΡΠ΅Π½-2-ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Ρ) Π°Π±ΠΎ Π΅ΡΠΈΠ»-2-ΡΡΠ°Π½ΠΎ-3-(1Π-ΡΠ½Π΄ΠΎΠ»-3-ΡΠ»)Π°ΠΊΡΠΈΠ»Π°Ρ (Π΄Π»Ρ ΡΠ½Π΄ΠΎΠ»-3-ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Ρ). Π£ΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΠΎΠ½ΡΡΠ²ΠΈΡ
ΡΠΎΠ»Π΅ΠΉ ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈΡ
Π±ΡΡ-Π°Π΄ΡΠΊΡΡΠ² Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄ΡΠ² ΡΠΏΠΎΡΡΠ΅ΡΡΠ³Π°Π»ΠΎΡΡ Π½Π°ΠΌΠΈ Π²ΠΏΠ΅ΡΡΠ΅ Ρ ΠΉΠΎΠ³ΠΎ ΡΠΎΠ·Π³Π»ΡΠ½ΡΡΠΎ ΡΠΊ ΠΊΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠ½ΠΈΠΉ Π΄ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ 2-Π°ΠΌΡΠ½ΠΎ-4Π-ΠΏΡΡΠ°Π½ΡΠ² ΠΏΡΠΎΡΠ΅Ρ. Π¦Π΅ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΡΠ²Π°ΡΠΈ ΠΌΠΎΠ΄ΠΈΡΡΠΊΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ 2-Π°ΠΌΡΠ½ΠΎ-4Π-ΠΏΡΡΠ°Π½ΡΠ², ΡΠΊΠΈΠΉ Π²ΠΊΠ»ΡΡΠ°Ρ ΡΡΠ°Π΄ΡΡ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΠΎΠ½ΡΡΠ²ΠΈΡ
ΡΠΎΠ»Π΅ΠΉ Π±ΡΡ-Π°Π΄ΡΠΊΡΡΠ². ΠΡΡΠ½ΡΡΡΡΠΈΡΡ Π½Π° Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠΌΡ ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌΡ, ΠΌΠΈ Π·ΠΌΠΎΠ³Π»ΠΈΒ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈ 2-Π°ΠΌΡΠ½ΠΎ-3-Π΅ΡΠΎΠΊΡΠΈΠΊΠ°ΡΠ±ΠΎΠ½ΡΠ»-4-(2-ΡΡΡΠ½ΡΠ»)-4H-ΠΏΡΡΠ°Π½ Π±Π΅Π· Π΄ΠΎΠΌΡΡΠΎΠΊ Π±ΡΡ-Π°Π΄ΡΠΊΡΡ, Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΠΈ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½Ρ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ. ΠΠ°ΠΌΠΈ Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΡΠΏΠΎΡΡΠ± ΠΎΠ΄Π΅ΡΠΆΠ°Π½Π½Ρ ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΠΎΠ½ΡΡΠ²ΠΈΡ
ΡΠΎΠ»Π΅ΠΉΒ Π±ΡΡ-Π°Π΄ΡΠΊΡΡΠ² ΠΏΡΡΠΌΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡΡ 1-Π΅ΡΠΈΠ»-1Π-2,1-Π±Π΅Π½Π·ΠΎΡΡΠ°Π·ΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ Π² ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ Π΅ΠΊΠ²ΡΠΌΠΎΠ»ΡΡΠ½ΠΈΡ
ΠΊΡΠ»ΡΠΊΠΎΡΡΠ΅ΠΉ ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΡΠ½Ρ. ΠΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΠΎ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½Π° Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π΅ΡΠΈΠ»-1Π-2,1-Π±Π΅Π½Π·ΠΎΡΡΠ°Π·ΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ Π½ΡΡΡΠΈΠ»Π°ΠΌΠΈ ΡΠ° Π³Π΅ΡΠ΅ΡΠΈΠ»ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ Ρ Π±ΡΠ»ΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌ ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠΎΠ²Π°Π½ΠΈΡ
2-Π°ΠΌΡΠ½ΠΎ-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-4Π-ΠΏΡΡΠ°Π½ΡΠ² Β Ρ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ Π· ΠΏΠΎΡΡΠ°Π΄ΡΠΉΠ½ΠΈΠΌ ΠΏΡΠ΄Ρ
ΠΎΠ΄ΠΎΠΌ
Measurement of the vector and tensor analyzing powers for Dp-elastic scattering at the energy of 800 MeV
The vector Ay and tensor analyzing powers Ayy and Axx for dp-elastic scattering were measured at the energy of 800 MeV and at the angular range from 60Β° to 135Β° in the center-of-mass system at the JINR Nuclotron. The experimental data are compared with the calculations obtained within framework of relativistic multiple scattering approac
Multilevel Parallelization: Grid Methods for Solving Direct and Inverse Problems
In this paper we present grid methods which we have developed for solving direct and inverse problems, and their realization with different levels of optimization. We have focused on solving systems of hyperbolic equations using finite difference and finite volume numerical methods on multicore architectures. Several levels of parallelism have been applied: geometric decomposition of the calculative domain, workload distribution over threads within OpenMP directives, and vectorization. The run-time efficiency of these methods has been investigated. These developments have been tested using the astrophysics code AstroPhi on a hybrid cluster Polytechnic RSC PetaStream (consisting of Intel Xeon Phi accelerators) and a geophysics (seismic wave) code on an Intel Core i7-3930K multicore processor. We present the results of the calculations and study MPI run-time energy efficiency
First results on the energy scan of the vector Ay and tensor Ayy and Axx analyzing powers in deuteronproton elastic scattering at Nuclotron
New results on the vector A y and tensor Ayy and Axx analyzing powers in deuteronproton elastic scattering obtained at Nuclotron in the energy range 400-1800 MeV are presented. These data have been obtained in 2016-2017 at DSS setup at internal target station using polarized deuteron beam from new source of polarized ions. The preliminary data on the deuteron analyzing powers in in the wide energy range demonstrate the sensitivity to the shortrange spin structure of the nucleon-nucleon correlation
Spin studies of the short-range correlations at Nuclotron
The results on the angular dependencies of the vector Ay and tensor Ayy and Axx analyzing powers in deuteron-proton elastic scattering at large scattering angles are presented. These data were obtained at internal target at JINR Nuclotron in the energy range 400-1800 MeV using polarized deuteron beam from new polarized ion source. New data on the deuteron analyzing powers in in the wide energy range demonstrate the sensitivity to the short-range spin structure of the isoscalar polarized deutero
How quantum bound states bounce and the structure it reveals
We investigate how quantum bound states bounce from a hard surface. Our
analysis has applications to ab initio calculations of nuclear structure and
elastic deformation, energy levels of excitons in semiconductor quantum dots
and wells, and cold atomic few-body systems on optical lattices with sharp
boundaries. We develop the general theory of elastic reflection for a composite
body from a hard wall. On the numerical side we present ab initio calculations
for the compression of alpha particles and universal results for two-body
states. On the analytical side we derive a universal effective potential that
gives the reflection scattering length for shallow two-body states.Comment: final publication version, new lattice results on alpha particle
compression, 5 pages, 2 figure
ΠΠΎΠΌΡΠ½ΠΎ-ΡΠ΅Π°ΠΊΡΡΡ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ, Π³Π΅ΡΠ°ΡΠ΅Π½ΠΊΠ°ΡΠ±Π°Π»ΡΠ΄Π΅Π³ΡΠ΄ΡΠ² ΡΠ° Π°ΠΊΡΠΈΠ²Π½ΠΈΡ ΠΌΠ΅ΡΠΈΠ»Π΅Π½ΠΎΠ²ΠΈΡ Π½ΡΡΡΠΈΠ»ΡΠ² Ρ ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²Ρ Π½ΠΎΠ²ΠΈΡ 2-Π°ΠΌΡΠ½ΠΎ-4Π-ΠΏΡΡΠ°Π½ΡΠ² Ρ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΡΡ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΈΡ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ
Multicomponent domino reactions are an effective modern approach in the synthesis of different types of organic compounds, including biologically active pyrans.Aim. To study the three-component interaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide with different hetarenecarbaldehydes and active methylene nitriles in order to synthesize new 2-amino-4H-pyran derivatives, as well as the antimicrobial activity of the compounds obtained.Results and discussion. 2-Amino-4-heteryl-4,6-dihydropyrano[3,2-c][2,1]benzoxathiin-3-carbonitrile 5,5-dioxides were obtained by stepwise and multicomponent reactions of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide with hetarenecarbaldehydes and malononitrile. For the same interaction with ethyl cyanoacetate the reaction selectivity decreased and not only target ethyl 2-amino-4H-pyran-3-carboxylates were obtained, but also triethylammonium salts of bis(1,2-benzoxathiin-2,2-dioxo-4-ol-3-yl)(heteryl)methane. The latter were also purposefully synthesized by the two-component reaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide with hetarenecarbaldehydes in the presence of triethylamine. The compounds obtained revealed a higher antimicrobial activity against gram-positive bacteria and fungi compared to the reference drugs.Experimental part. 3-Amino-4-heteryl-4,6-dihydropyrano[3,2-c][2,1]benzoxathiin-3-carbonitrile 5,5-dioxides and triethylammonium 3-[1-(4-hydroxy-2,2-dioxido-1,2-benzoxathiin-3-yl)heteryl]-1,2-benzoxathiin-4-olate 2,2-dioxides were synthesized. The antimicrobial activity of the compounds synthesized was studied by the agar diffusion method.Conclusions. It has been proven that the multicomponent format for the three-component interaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide with hetarenecarbaldehydes and active methylene nitriles is more favorable and convenient than the stepwise approach to obtain new derivatives of 2-amino-4H-pyrans. Triethylammonium 3-[(4-hydroxy-2,2-dioxido-2,1-benzoxathiin-3-yl)heteryl]-2,1-benzoxathiin-5-olate 2,2-dioxides have been also synthesized. The antimicrobial properties of the compounds obtained are higher than in the reference drugs, especially against gram-positive bacteria and fungi.ΠΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΠ΅ Π΄ΠΎΠΌΠΈΠ½ΠΎ-ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ Π² ΡΠΈΠ½ΡΠ΅Π·Π΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, Π²ΠΊΠ»ΡΡΠ°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΏΠΈΡΠ°Π½Ρ.Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»ΠΎ ΠΈΠ·ΡΡΠΈΡΡ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ ΠΈ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π½ΠΈΡΡΠΈΠ»Π°ΠΌΠΈ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
2-Π°ΠΌΠΈΠ½ΠΎ-4Π-ΠΏΠΈΡΠ°Π½Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. 2-ΠΠΌΠΈΠ½ΠΎ-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-4,6-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠΏΠΈΡΠ°Π½ΠΎ[3,2-Ρ][2,1]Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΡΡΠΈΠ» 5,5-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Ρ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΠΏΡΡΠ΅ΠΌ ΡΡΡΠΏΠ΅Π½ΡΠ°ΡΡΡ
ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° Ρ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ ΠΈ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡΡΠΈΠ»ΠΎΠΌ. ΠΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΠΈΡΡΠΈΠ»Π° ΡΡΠΈΠ»ΡΠΈΠ°Π½ΠΎΠ°ΡΠ΅ΡΠ°ΡΠ° ΠΈΠ·Π±ΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΡΠ½ΠΈΠΆΠ°Π»Π°ΡΡ, ΠΈ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅Π»Π΅Π²ΡΠ΅ ΡΡΠΈΠ» 2-Π°ΠΌΠΈΠ½ΠΎ-4Π-ΠΏΠΈΡΠ°Π½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΡΡΠΈΡΡΠΈΠ»Π°ΠΌΠΌΠΎΠ½ΠΈΠ΅Π²ΡΠ΅ ΡΠΎΠ»ΠΈ Π±ΠΈΡ(1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-2,2-Π΄ΠΈΠΎΠΊΡΠΎ-4-ΠΎΠ»-3-ΠΈΠ»)(Π³Π΅ΡΠ΅ΡΠΈΠ»)ΠΌΠ΅ΡΠ°Π½Π°. ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ ΡΠ°ΠΊΠΆΠ΅ Π±ΡΠ»ΠΈ ΡΠ΅Π»Π΅Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΏΡΡΠ΅ΠΌ Π΄Π²ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠ½-4(3H)-ΠΎΠ½-2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° Ρ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΡΡΠΈΡΡΠΈΠ»Π°ΠΌΠΈΠ½Π°. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΈ Π³ΡΠΈΠ±ΠΎΠ², ΡΠ΅ΠΌ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΡ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ 3-Π°ΠΌΠΈΠ½ΠΎ-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-4,6-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠΏΠΈΡΠ°Π½ΠΎ[3,2-Ρ][2,1]Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΡΡΠΈΠ»-5,5-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Ρ ΠΈ ΡΡΠΈΡΡΠΈΠ»Π°ΠΌΠΌΠΎΠ½ΠΈΠΉ 3-[1-(4-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄ΠΎ-1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-3-ΠΈΠ»)Π³Π΅ΡΠ΅ΡΠΈΠ»]-1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4-ΠΎΠ»Π°Ρ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Ρ. ΠΠ½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΈΠ·ΡΡΠ°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ.ΠΡΠ²ΠΎΠ΄Ρ. Π Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΠΏΡΠ΅Π΄ΠΏΠΎΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠ°ΡΠ° Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
2-Π°ΠΌΠΈΠ½ΠΎ-4H-ΠΏΠΈΡΠ°Π½Π° ΠΏΡΡΠ΅ΠΌ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° Ρ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ ΠΈ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π½ΠΈΡΡΠΈΠ»Π°ΠΌΠΈ. Π’ΡΠΈΡΡΠΈΠ»Π°ΠΌΠΌΠΎΠ½ΠΈΠΉ 3-[(4-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄ΠΎ-2,1-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-3-ΠΈΠ»)Π³Π΅ΡΠ΅ΡΠΈΠ»]-2,1-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-5-ΠΎΠ»Π°Ρ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Ρ Π±ΡΠ»ΠΈ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Ρ Π΄Π²ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠ΅ΠΉ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΠΈ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄ΠΎΠ². ΠΠ½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π²ΡΡΠ΅, ΡΠ΅ΠΌ Ρ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΈ Π³ΡΠΈΠ±ΠΎΠ².ΠΠ΄Π½ΠΈΠΌ ΡΠ· Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΡΡΠ°ΡΠ½ΠΈΡ
ΠΏΡΠ΄Ρ
ΠΎΠ΄ΡΠ² Π΄ΠΎ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΎΡΠ³Π°Π½ΡΡΠ½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ, Π² ΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
ΠΏΡΡΠ°Π½ΡΠ², Ρ Π±Π°Π³Π°ΡΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½Ρ Π΄ΠΎΠΌΡΠ½ΠΎ-ΡΠ΅Π°ΠΊΡΡΡ.ΠΠ΅ΡΠΎΡ Π΄Π°Π½ΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ Π±ΡΠ»ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΈΡΠΈ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½Ρ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ ΡΠ° ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ Π½ΡΡΡΠΈΠ»Π°ΠΌΠΈ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
2-Π°ΠΌΡΠ½ΠΎ-4Π-ΠΏΡΡΠ°Π½Ρ ΡΠ° Π²ΠΈΠ·Π½Π°ΡΠΈΡΠΈ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. 2-ΠΠΌΡΠ½ΠΎ-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-4,6-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠΏΡΡΠ°Π½ΠΎ[3,2-Ρ][2,1]Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΡΡΡΠΈΠ» 5,5-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΈ Π±ΡΠ»ΠΈ ΠΎΠ΄Π΅ΡΠΆΠ°Π½Ρ ΡΠ»ΡΡ
ΠΎΠΌ ΡΡΡΠΏΡΠ½ΡΠ°ΡΠΈΡ
ΡΠ° Π±Π°Π³Π°ΡΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΈΡ
ΡΠ΅Π°ΠΊΡΡΠΉ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ Ρ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΡΡΡΠΈΠ»ΠΎΠΌ. ΠΡΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΡΠΊ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΡΡΡΠΈΠ»Ρ Π΅ΡΠΈΠ»ΡΡΠ°Π½ΠΎΠ°ΡΠ΅ΡΠ°ΡΡ Π±ΡΠ»ΠΈ ΠΎΠ΄Π΅ΡΠΆΠ°Π½Ρ Π½Π΅ Π»ΠΈΡΠ΅ ΡΡΠ»ΡΠΎΠ²Ρ Π΅ΡΠΈΠ» 2-Π°ΠΌΡΠ½ΠΎ-4Π-ΠΏΡΡΠ°Π½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΈ, Π°Π»Π΅ ΡΠ°ΠΊΠΎΠΆ ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΠΎΠ½ΡΡΠ²Ρ ΡΠΎΠ»Ρ Π±ΡΡ(1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-2,2-Π΄ΡΠΎΠΊΡΠΎ-4-ΠΎΠ»-3-ΡΠ»)(Π³Π΅ΡΠ΅ΡΠΈΠ»)ΠΌΠ΅ΡΠ°Π½Ρ. ΠΡΡΠ°Π½Π½Ρ ΡΠ°ΠΊΠΎΠΆ Π±ΡΠ»ΠΈ ΡΡΠ»Π΅ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½Ρ ΡΠ»ΡΡ
ΠΎΠΌ Π΄Π²ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΡ ΡΠ΅Π°ΠΊΡΡΡ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4(3H)-ΠΎΠ½-2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ Π² ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΡΠ½Ρ. ΠΠ΄Π΅ΡΠΆΠ°Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π±ΡΠ»ΡΡ Π²ΠΈΡΠΎΠΊΡ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΠΎΠ΄ΠΎ Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡ
Π±Π°ΠΊΡΠ΅ΡΡΠΉ Ρ Π³ΡΠΈΠ±ΡΠ², Π½ΡΠΆ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ.ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π° ΡΠ°ΡΡΠΈΠ½Π°. ΠΡΠ»ΠΈ ΠΎΠ΄Π΅ΡΠΆΠ°Π½Ρ 3-Π°ΠΌΡΠ½ΠΎ-4-Π³Π΅ΡΠ΅ΡΠΈΠ»-4,6-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠΏΡΡΠ°Π½ΠΎ[3,2-Ρ][2,1]Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΡΡΡΠΈΠ»-5,5-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΈ ΡΠ° ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΠΎΠ½ΡΠΉ 3-[1-(4-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΎ-1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-3-ΡΠ»)Π³Π΅ΡΠ΅ΡΠΈΠ»]-1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4-ΠΎΠ»Π°Ρ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΈ. ΠΠ½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ Π²ΠΈΠ²ΡΠ°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡΡΠ·ΡΡ Π² Π°Π³Π°Ρ.ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. Π Ρ
ΠΎΠ΄Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±ΡΠ»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΠΏΠ΅ΡΠ΅Π²Π°Π³Π° Π±Π°Π³Π°ΡΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΄Ρ
ΠΎΠ΄Ρ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Ρ Π½ΠΎΠ²ΠΈΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
2-Π°ΠΌΡΠ½ΠΎ-4H-ΠΏΡΡΠ°Π½Ρ ΡΠ»ΡΡ
ΠΎΠΌ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ ΡΠ° ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ Π½ΡΡΡΠΈΠ»Π°ΠΌΠΈ. Π’ΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΠΎΠ½ΡΠΉ 3-[(4-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΎ-2,1-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-3-ΡΠ»)Π³Π΅ΡΠ΅ΡΠΈΠ»]-2,1-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-5-ΠΎΠ»Π°Ρ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΈ Π±ΡΠ»ΠΈ ΠΎΠ΄Π΅ΡΠΆΠ°Π½Ρ Π΄Π²ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡΡ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4(3H)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΠΌΠΈ Π°Π»ΡΠ΄Π΅Π³ΡΠ΄Π°ΠΌΠΈ. ΠΠ½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ Π²ΠΈΡΠ΅, Π½ΡΠΆ Ρ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ, ΠΎΡΠΎΠ±Π»ΠΈΠ²ΠΎ ΡΠΎΠ΄ΠΎ Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡ
Π±Π°ΠΊΡΠ΅ΡΡΠΉ Ρ Π³ΡΠΈΠ±ΡΠ²
- β¦